Free algebras of variety of unars with Malcev's operation $p$, define by identity $p(x,y,x)=y$
Čebyševskij sbornik, Tome 12 (2011) no. 2, pp. 127-134
Voir la notice de l'article provenant de la source Math-Net.Ru
In article is given construction of free algebras of the variety of algebras with one unary and one ternary Mal'cev's operation $p$, provided that operations is commute, defined by identity $p(x,y,x)=y$. It is proved decidability of word problem in free algebras and uniqueness of free basis. It is proved realization of Hopf property for free algebras of finitely rank.
@article{CHEB_2011_12_2_a15,
author = {V. L. Usol'cev},
title = {Free algebras of variety of unars with {Malcev's} operation $p$, define by identity $p(x,y,x)=y$},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {127--134},
publisher = {mathdoc},
volume = {12},
number = {2},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a15/}
}
TY - JOUR AU - V. L. Usol'cev TI - Free algebras of variety of unars with Malcev's operation $p$, define by identity $p(x,y,x)=y$ JO - Čebyševskij sbornik PY - 2011 SP - 127 EP - 134 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a15/ LA - ru ID - CHEB_2011_12_2_a15 ER -
V. L. Usol'cev. Free algebras of variety of unars with Malcev's operation $p$, define by identity $p(x,y,x)=y$. Čebyševskij sbornik, Tome 12 (2011) no. 2, pp. 127-134. http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a15/