Free algebras of variety of unars with Malcev's operation $p$, define by identity $p(x,y,x)=y$
Čebyševskij sbornik, Tome 12 (2011) no. 2, pp. 127-134

Voir la notice de l'article provenant de la source Math-Net.Ru

In article is given construction of free algebras of the variety of algebras with one unary and one ternary Mal'cev's operation $p$, provided that operations is commute, defined by identity $p(x,y,x)=y$. It is proved decidability of word problem in free algebras and uniqueness of free basis. It is proved realization of Hopf property for free algebras of finitely rank.
@article{CHEB_2011_12_2_a15,
     author = {V. L. Usol'cev},
     title = {Free algebras of variety of unars with {Malcev's} operation $p$, define by identity $p(x,y,x)=y$},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {127--134},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a15/}
}
TY  - JOUR
AU  - V. L. Usol'cev
TI  - Free algebras of variety of unars with Malcev's operation $p$, define by identity $p(x,y,x)=y$
JO  - Čebyševskij sbornik
PY  - 2011
SP  - 127
EP  - 134
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a15/
LA  - ru
ID  - CHEB_2011_12_2_a15
ER  - 
%0 Journal Article
%A V. L. Usol'cev
%T Free algebras of variety of unars with Malcev's operation $p$, define by identity $p(x,y,x)=y$
%J Čebyševskij sbornik
%D 2011
%P 127-134
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a15/
%G ru
%F CHEB_2011_12_2_a15
V. L. Usol'cev. Free algebras of variety of unars with Malcev's operation $p$, define by identity $p(x,y,x)=y$. Čebyševskij sbornik, Tome 12 (2011) no. 2, pp. 127-134. http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a15/