An asymptotic formula for the expectation of finite elliptic Minkowski fractions
Čebyševskij sbornik, Tome 11 (2010) no. 2, pp. 4-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove asymptotic formulae with two significant terms for the expectation of the random variable $\nu(c/d)$ — length of Minkowski continued fraction with parametre $\Omega=2$ when the variables $c$ and $d$ range over the set $1\le c\le d\le R\infty$.
@article{CHEB_2010_11_2_a0,
     author = {O. A. Gorkusha},
     title = {An asymptotic formula for the expectation of finite elliptic {Minkowski} fractions},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {4--24},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2010_11_2_a0/}
}
TY  - JOUR
AU  - O. A. Gorkusha
TI  - An asymptotic formula for the expectation of finite elliptic Minkowski fractions
JO  - Čebyševskij sbornik
PY  - 2010
SP  - 4
EP  - 24
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2010_11_2_a0/
LA  - ru
ID  - CHEB_2010_11_2_a0
ER  - 
%0 Journal Article
%A O. A. Gorkusha
%T An asymptotic formula for the expectation of finite elliptic Minkowski fractions
%J Čebyševskij sbornik
%D 2010
%P 4-24
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2010_11_2_a0/
%G ru
%F CHEB_2010_11_2_a0
O. A. Gorkusha. An asymptotic formula for the expectation of finite elliptic Minkowski fractions. Čebyševskij sbornik, Tome 11 (2010) no. 2, pp. 4-24. http://geodesic.mathdoc.fr/item/CHEB_2010_11_2_a0/

[1] Hermite C. H., “Sur L'introduction des variables continues dans la theorie des nombres”, Journal fur die reine und angewandte Mathematik, 41 (1851) | Zbl

[2] H. Minkowski, “Zur Theorie der Kettenbruche”, Annales de l'Ecole Normale Superieure, 13:3 (1894), 41–60 | MR

[3] H. Heilbronn, “On the average length of a class of finite continued fractions”, Abhandlungen aus Zahlentheorie und Analysis, VEB, Berlin, 1968, 87–96 | MR

[4] Tonkov T., “On the average length of finite continued fractions”, Acta Arith., 26 (1974), 47–57 | MR | Zbl

[5] J. W. Porter, “On a theorem of Heilbronn”, Mathematika, 22:1 (1975) | MR

[6] G. H. Norton, “On the asymptotic analysis of the Euclidean algorithm”, J. Symbolic Comput., 10:1 (1990) | MR

[7] Ustinov A. V., “O chisle reshenii sravneniya $xy\equiv l\pmod q$ pod grafikom dvazhdy nepreryvno differentsiruemoi funktsii”, Algebra i analiz, 20:5, 186–216 | MR | Zbl

[8] O. A. Gorkusha, “O konechnykh tsepnykh drobyakh spetsialnogo vida”, Chebyshevskii sbornik, 9:1(25) (2008), 80–108 | MR

[9] B. Valée, “A unifying framework fot thr analysis of a class of Euclidean algorithms”, LATIN 2000: Theoretical informatics (Punta del Esta, Uruguay, 2000), Lecture Notes in Comput. Sci., 1776, Springer-Verlag, Berlin, 343–354 | Zbl

[10] A. V. Ustinov, “Asymptotic behaviour of the first and second moments for the number of steps in the Euclidean algorithm”, Russian Math. Surveys, 72:5 (2008), 1023–1025 | MR

[11] Kassels Dzh. V. S., Vvedenie v geometriyu chisel, Mir, M., 1965, 113 pp. | MR

[12] Klein F., “Ueber eine geometrische Auffassung der gewohnlichen Kettenbruchentwicklung”, Nachr. Ges. Wiss. Gottingen. Mathem.-Phys. Kl., 1895, no. 3, 357–359 | Zbl

[13] Klein F., “Sur une representation geometrique du developpement en fractioncontinue ordinaire”, Nouv. Ann. Math., 15:3 (1896), 321–331

[14] Changa M. E., Metod kompleksnogo integrirovaniya, MIAN, M., 2006, 20–21

[15] Khinchin A. Ya., Izbrannye trudy po teorii chisel, MTsNMO, M., 2006, 12–19 | MR

[16] Knuth D. E., Yao A. C., “Analysis of the Subtractive Algorithm for Greatest Common Divisors”, Proc. Nat. Acad. Sci. USA, 72:12 (1975), 4720–4722 | MR | Zbl

[17] Dixon J. D., “The Number of Steps in the Euclidean Algorithm”, J. of Number Theory, 2 (1970), 414–422 | MR | Zbl

[18] Hensley D., “The Number of Steps in the Euclidean Algorithm”, J. of Number Theory, 49 (1994), 142–182 | MR | Zbl

[19] Bykovskii V. A., “Otsenka dispersii dlin konechnykh nepreryvnykh drobei”, FPM, 11:6 (2005), 15–26 | MR