An asymptotic formula for the expectation of finite elliptic Minkowski fractions
Čebyševskij sbornik, Tome 11 (2010) no. 2, pp. 4-24

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove asymptotic formulae with two significant terms for the expectation of the random variable $\nu(c/d)$ — length of Minkowski continued fraction with parametre $\Omega=2$ when the variables $c$ and $d$ range over the set $1\le c\le d\le R\infty$.
@article{CHEB_2010_11_2_a0,
     author = {O. A. Gorkusha},
     title = {An asymptotic formula for the expectation of finite elliptic {Minkowski} fractions},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {4--24},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2010_11_2_a0/}
}
TY  - JOUR
AU  - O. A. Gorkusha
TI  - An asymptotic formula for the expectation of finite elliptic Minkowski fractions
JO  - Čebyševskij sbornik
PY  - 2010
SP  - 4
EP  - 24
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2010_11_2_a0/
LA  - ru
ID  - CHEB_2010_11_2_a0
ER  - 
%0 Journal Article
%A O. A. Gorkusha
%T An asymptotic formula for the expectation of finite elliptic Minkowski fractions
%J Čebyševskij sbornik
%D 2010
%P 4-24
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2010_11_2_a0/
%G ru
%F CHEB_2010_11_2_a0
O. A. Gorkusha. An asymptotic formula for the expectation of finite elliptic Minkowski fractions. Čebyševskij sbornik, Tome 11 (2010) no. 2, pp. 4-24. http://geodesic.mathdoc.fr/item/CHEB_2010_11_2_a0/