Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2010_11_1_a7, author = {A. D. Bruno}, title = {Structure of the best diophantine approximations and multidimensional generalizations of the continued fraction}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {68--73}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a7/} }
TY - JOUR AU - A. D. Bruno TI - Structure of the best diophantine approximations and multidimensional generalizations of the continued fraction JO - Čebyševskij sbornik PY - 2010 SP - 68 EP - 73 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a7/ LA - en ID - CHEB_2010_11_1_a7 ER -
A. D. Bruno. Structure of the best diophantine approximations and multidimensional generalizations of the continued fraction. Čebyševskij sbornik, Tome 11 (2010) no. 1, pp. 68-73. http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a7/
[1] G. F. Voronoi, On Generalization of the Algorithm of Continued Fractions, Warszawa University, 1896; Collected Works in 3 Volumes, v. 1, Izdat. Akad. Nauk USSR, Kiev, 1952 (in Russian) | MR
[2] Doklady Mathematics, 74:2 (2006), 628–632 | MR | MR | Zbl
[3] Doklady Mathematics, 80:3 (2009), 887–890 | MR | Zbl
[4] Doklady Mathematics, 71:3 (2005), 396–400 | MR
[5] Doklady Mathematics, 71:3 (2005), 446–450 | MR
[6] A. D. Bruno, “Generalizations of continued fraction”, Chebyshevskii sbornik, 7:3 (2006), 4–71 | MR
[7] Doklady Mathematics, 82:1 (2010)
[8] F. Klein, “Über eine geometrische Auffassung der gewöhnlichen Kettenbruchentwicklung”, Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl., 1895, no. 3, 357–359 | Zbl
[9] H. Minkowski, “Généralisation de le théorie des fractions continues”, Ann. Sci. Ec. Norm. Super. ser. III, 13 (1896), 41–60 ; Gesamm. Abh., I, 278–292 | MR | Zbl
[10] B. F. Skubenko, “Minimum of a decomposable cubic form of three variables”, J. Sov. Math., 53:3 (1991), 302–321 | MR | Zbl
[11] V. I. Arnold, “Higher dimensional continued fractions”, Regular and Chaotic Dynamics, 3:3 (1998), 10–17 | MR | Zbl
[12] Math. Notes, 56:3–4 (1994), 994–1007 | MR | MR
[13] G. Lachaud, “Polyèdre d'Arnol'd et voile d'un cône simplicial: analogues du théorème de Lagrange”, C. R. Acad. Sci. Ser. 1, 317 (1993), 711–716 | MR | Zbl
[14] Mathem. Notes, 61:3 (1997), 278–286 | MR
[15] V. I. Parusnikov, “Klein polyhedra for complete decomposable forms”, Number theory. Diophantine, Computational and Algebraic Aspects, eds. K. Győry, A. Pethő, V. T. Sós, De Gruyter, Berlin–New York, 1998, 453–463 | MR | Zbl
[16] Math. Notes, 67:1 (2000), 87–102 | MR | Zbl
[17] Math. Notes, 77:4 (2005), 523–538 (in English) | MR | Zbl
[18] J. C. Lagarias, “Geodesic multidimensional continued fractions”, Proc. London Math. Soc. (3), 69 (1994), 464–488 | MR | Zbl