On the number of representations of natural numbers by cyclic binary quadratic forms
Čebyševskij sbornik, Tome 11 (2010) no. 1, pp. 116-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CHEB_2010_11_1_a12,
     author = {Yu. Yu. Evseeva},
     title = {On the number of representations of natural numbers by cyclic binary quadratic forms},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {116--125},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a12/}
}
TY  - JOUR
AU  - Yu. Yu. Evseeva
TI  - On the number of representations of natural numbers by cyclic binary quadratic forms
JO  - Čebyševskij sbornik
PY  - 2010
SP  - 116
EP  - 125
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a12/
LA  - ru
ID  - CHEB_2010_11_1_a12
ER  - 
%0 Journal Article
%A Yu. Yu. Evseeva
%T On the number of representations of natural numbers by cyclic binary quadratic forms
%J Čebyševskij sbornik
%D 2010
%P 116-125
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a12/
%G ru
%F CHEB_2010_11_1_a12
Yu. Yu. Evseeva. On the number of representations of natural numbers by cyclic binary quadratic forms. Čebyševskij sbornik, Tome 11 (2010) no. 1, pp. 116-125. http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a12/

[1] Andrianov A. N., Zhuravlëv V. G., Modulyarnye formy i operatory Gekke, Nauka, M., 1990 | MR

[2] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1984

[3] Vepkhvadze T. V., “O predstavlenii chisel polozhitelnymi binarnymi kvadratichnymi formami nechetnogo diskriminanta”, Tr. Tbilis. Mat. in-ta, AN. Gruz. SSR, 1974

[4] Gauss K. F., Trudy po teorii chisel, Izdatelstvo Akademii nauk SSSR, M., 1959 | MR

[5] Golubeva E. P., “Ob isklyuchitelnykh chislakh dlya binarnykh kvadratichnykh form”, Zap. nauchn. sem. POMI, 254, 1998

[6] Zhuravlëv V. G., “Predstavlenie kvadratichnykh form rodom kvadratichnykh form”, Algebra i analiz, 8 (1996) | MR

[7] Fomenko O. M., “Predstavlenie tselykh chisel, prinadlezhaschikh podposledovatelnostyam naturalnogo ryada, binarnymi kvadratichnymi formami”, Zap. nauchn. sem. POMI, 254, 1998 | Zbl

[8] Shimura G., Vvedenie v arifmeticheskuyu teoriyu avtomorfnykh funktsii, Mir, M., 1973 | MR | Zbl

[9] Basilla J. M., “On the solution of $x^2+dy^2=m$”, Proc. Japan Acad., Ser. A, 80 (2004)

[10] Buel D. A., Binary Quadratic Forms, Classical Theory and Modern Computations, N.Y., 1989 | MR

[11] Dickson L. E., History of the theory of numbers, v. 3, Quadratic and higher forms, N. Y., 1992

[12] Dirichlet P. G. L., Lectures on Number Theory, Supplements by R. Dedekind, transl. by J. Stillwell, Amer. Math. Soc., 1999 | MR | Zbl

[13] Pall G., “The distribution of intergers represented by binary quadratic forms”, Bull. Amer. Math. Soc., 49:6 (1943) | MR | Zbl

[14] Petersson H., Modulfunktionen und quadratische Formen, Ergebnisse der Mathematik und ihrer Grenzgebiete, 100, Springer-Verlag, 1982 | MR | Zbl

[15] Shimura G., “The number of representations of an integer by a quadratic form”, Duke Mathematical Journal, 100:1 (1999) | MR | Zbl

[16] Siegel C. L., “Über die analytische Theorie der Quadratischen Formen”, Ann. Math., 1935

[17] Siegel C. L., Lectures on the Analytical Theory of Quadratic Forms, Revised Edition, Göttingen, 1963 | MR