Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2008_9_1_a13, author = {A. M. Raǐgorodskiǐ and I. I. Timirova}, title = {On the {Nelson--Erd\H{o}s--Hadwiger} problem for a series of metric spaces}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {158--168}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2008_9_1_a13/} }
TY - JOUR AU - A. M. Raǐgorodskiǐ AU - I. I. Timirova TI - On the Nelson--Erd\H{o}s--Hadwiger problem for a series of metric spaces JO - Čebyševskij sbornik PY - 2008 SP - 158 EP - 168 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2008_9_1_a13/ LA - ru ID - CHEB_2008_9_1_a13 ER -
A. M. Raǐgorodskiǐ; I. I. Timirova. On the Nelson--Erd\H{o}s--Hadwiger problem for a series of metric spaces. Čebyševskij sbornik, Tome 9 (2008) no. 1, pp. 158-168. http://geodesic.mathdoc.fr/item/CHEB_2008_9_1_a13/
[1] M. Benda, M. Perles, “Colorings of metric spaces”, Geombinatorics, 9 (2000), 113–126 | MR
[2] P. Frankl, R. Wilson, “Intersection theorems with geometric consequences”, Combinatorica, 1 (1981), 357–368 | DOI | MR
[3] J.-H. Kang, Z. Füredi, “Distance graphs on $ {\mathbb Z}^n $ with $ l_1 $-norm”, Theoretical Comp. Sci., 319:3 (2004), 357–366 | DOI | MR
[4] A. M. Raigorodskii, “O khromaticheskom chisle prostranstva”, Uspekhi matem. nauk, 55:2 (2000), 147–148 | MR
[5] D. G. Larman, C. A. Rogers, “The realization of distances within sets in Euclidean space”, Mathematika, 19 (1972), 1– 24 | DOI | MR
[6] A. M. Raigorodskii, “O khromaticheskom chisle prostranstva s metrikoi $ l_q $”, Uspekhi matem. nauk, 59:5 (2004), 161–162 | MR
[7] A. M. Raigorodskii, “O khromaticheskikh chislakh metricheskikh prostranstv”, Chebyshevskii sbornik, 5:1(9) (2004), 175–185 | MR
[8] A. M. Raigorodskii, “Problema Borsuka i khromaticheskie chisla metricheskikh prostranstv”, Uspekhi matem. nauk, 56:1 (2001), 107–146 | MR
[9] L. A. Székely, “Erdős on unit distances and the Szemerédi–Trotter theorems”, Paul Erdős and his Mathematics, Bolyai Society Mathematical Studies, 11, Springer, 2002, 649–666 | MR
[10] A. Soifer, “Khromaticheskoe chislo ploskosti: ego proshloe, nastoyaschee i buduschee”, Mat. prosveschenie, 2004, no. 8
[11] A. M. Raigorodskii, Lineino-algebraicheskii metod v kombinatorike, MTsNMO, M., 2007
[12] A. M. Raigorodskii, Khromaticheskie chisla, MTsNMO, M., 2003
[13] P. Brass, W. Moser, J. Pach, Research problems in discrete geometry, Springer, 2005 | MR
[14] V. Klee, S. Wagon, Old and new unsolved problems in plane geometry and number theory, Math. Association of America, 1991 | MR
[15] J. Pach, P. K. Agarwal, Combinatorial geometry, John Wiley and Sons Inc., New York, 1995 | MR
[16] F. Kharari, Teoriya grafov, Mir, M., 1973 | MR
[17] N. G. de Bruijn, P. Erdős, “A colour problem for infinite graphs and a problem in the theory of relations”, Proc. Koninkl. Nederl. Acad. Wet., Ser. A, 54:5 (1951), 371–373
[18] N. Alon, Dzh. Spenser, Veroyatnostnyi metod, Binom. Laboratoriya znanii, M., 2007
[19] B. Bollobás, Random Graphs, Second Edition, Cambridge Univ. Press, 2001 | MR
[20] K. Prakhar, Raspredelenie prostykh chisel, Mir, M., 1967 | MR
[21] A. M. Raigorodskii, I. M. Shitova, “O khromaticheskikh chislakh veschestvennykh i ratsionalnykh prostranstv s neskolkimi veschestvennymi ili neskolkimi ratsionalnymi zapreschennymi rasstoyaniyami”, Matem. sbornik, 199 (2008) | MR