On the Goldbaсh-numbers
Čebyševskij sbornik, Tome 9 (2008) no. 1, pp. 4-8
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper proved asymptotic formula $$ R(n)=\sum\limits_{n=p_1+p_2}\ln p_1\ln p_2=2n\prod\limits_{p>2}\frac{p(p-2)}{(p-1)^2}\prod\limits_{\genfrac{}{}{0pt}{}{p\setminus n}{ p>2}}\frac{p-1}{p-2}+O(n^{1-2\delta}) $$ for all even $n\leq N,$ with the exception can of at most $E(N)$ values of $n$. Here $N$ is sufficiently large natural number, $p_1$, $p_2$, $p_3$ — are prime numbers, $\delta$ ($0\delta1$) is small positive constant. In prove used of Generalized Rieman Hypothesis.
@article{CHEB_2008_9_1_a0,
author = {I. A. Allakov},
title = {On the {Goldba{\cyrs}h-numbers}},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {4--8},
publisher = {mathdoc},
volume = {9},
number = {1},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2008_9_1_a0/}
}
I. A. Allakov. On the Goldbaсh-numbers. Čebyševskij sbornik, Tome 9 (2008) no. 1, pp. 4-8. http://geodesic.mathdoc.fr/item/CHEB_2008_9_1_a0/