Properties of the sums and products of subsets in a finite field of prime order
Čebyševskij sbornik, Tome 8 (2007) no. 2, pp. 30-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for any subsets $A_1,A_2,\ldots,A_n\subset\mathbb{F}_p, n\geqslant 2,$ such that $|A_i|\geqslant 2, 1\leqslant i\leqslant n,$ and $|A_1|\cdot |A_2|\cdot\ldots\cdot |A_n|>p^{1+\varepsilon}$ for some $\varepsilon>0$ we have $$NA_1\cdot A_2\cdot\ldots\cdot A_n=\mathbb{F}_p, $$ where $$N=\left\{ \begin{array}{ll} 16, \hbox{for $n=2$;} \\ 16\cdot\max\{1,24\left(\left[\log_2\left(\frac{1}{\varepsilon}\right)\right]+1\right)\}, \hbox{for $n=3$;} \\ 16^{n}\cdot\max\{7,2(-11-[\log_2(\varepsilon(n-2))])\}, \hbox{for $n>3$.} \\ \end{array} \right. $$
@article{CHEB_2007_8_2_a3,
     author = {A. A. Glibichuk},
     title = {Properties of the sums and products of subsets in a finite field of prime order},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {30--43},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a3/}
}
TY  - JOUR
AU  - A. A. Glibichuk
TI  - Properties of the sums and products of subsets in a finite field of prime order
JO  - Čebyševskij sbornik
PY  - 2007
SP  - 30
EP  - 43
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a3/
LA  - ru
ID  - CHEB_2007_8_2_a3
ER  - 
%0 Journal Article
%A A. A. Glibichuk
%T Properties of the sums and products of subsets in a finite field of prime order
%J Čebyševskij sbornik
%D 2007
%P 30-43
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a3/
%G ru
%F CHEB_2007_8_2_a3
A. A. Glibichuk. Properties of the sums and products of subsets in a finite field of prime order. Čebyševskij sbornik, Tome 8 (2007) no. 2, pp. 30-43. http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a3/

[1] Bourgain J., Katz N., Tao T., “A sum-product estimate in finite fields and their applications”, Geom. and Funct. Anal., 14 (2004), 27–57 | DOI | MR | Zbl

[2] Hart D., Iosevich A., Sums and products in finite fields: an integral geometric viewpoint, arXiv: 0705.4256 | MR

[3] Bourgain J., “Multilinear exponential sums in prime fields under optimal entropy conditions on the sources”, Geom and Funct. Anal. (to appear) | MR

[4] Glibichuk A., Konyagin S., “Additive properties of product sets in fields of prime order”, Centre de Recherches Mathématiques Proceedings and Notes, 43, 279–286 | MR | Zbl

[5] Tao T., Vu V., Additive combinatorics, Cambridge University Press, Cambridge, 2006 | MR