The joint universality for periodic zeta-functions
Čebyševskij sbornik, Tome 8 (2007) no. 2, pp. 162-174

Voir la notice de l'article provenant de la source Math-Net.Ru

A joint universality theorem for zeta-functions with periodic completely multiplicative coefficients is obtained.
@article{CHEB_2007_8_2_a16,
     author = {Antanas Laurin\v{c}ikas and Renata Macaitien\.{e} and Darius \v{S}iau\v{c}i\={u}nas},
     title = {The joint universality for periodic zeta-functions},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {162--174},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a16/}
}
TY  - JOUR
AU  - Antanas Laurinčikas
AU  - Renata Macaitienė
AU  - Darius Šiaučiūnas
TI  - The joint universality for periodic zeta-functions
JO  - Čebyševskij sbornik
PY  - 2007
SP  - 162
EP  - 174
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a16/
LA  - en
ID  - CHEB_2007_8_2_a16
ER  - 
%0 Journal Article
%A Antanas Laurinčikas
%A Renata Macaitienė
%A Darius Šiaučiūnas
%T The joint universality for periodic zeta-functions
%J Čebyševskij sbornik
%D 2007
%P 162-174
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a16/
%G en
%F CHEB_2007_8_2_a16
Antanas Laurinčikas; Renata Macaitienė; Darius Šiaučiūnas. The joint universality for periodic zeta-functions. Čebyševskij sbornik, Tome 8 (2007) no. 2, pp. 162-174. http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a16/