The joint universality for periodic zeta-functions
Čebyševskij sbornik, Tome 8 (2007) no. 2, pp. 162-174.

Voir la notice de l'article provenant de la source Math-Net.Ru

A joint universality theorem for zeta-functions with periodic completely multiplicative coefficients is obtained.
@article{CHEB_2007_8_2_a16,
     author = {Antanas Laurin\v{c}ikas and Renata Macaitien\.{e} and Darius \v{S}iau\v{c}i\={u}nas},
     title = {The joint universality for periodic zeta-functions},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {162--174},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a16/}
}
TY  - JOUR
AU  - Antanas Laurinčikas
AU  - Renata Macaitienė
AU  - Darius Šiaučiūnas
TI  - The joint universality for periodic zeta-functions
JO  - Čebyševskij sbornik
PY  - 2007
SP  - 162
EP  - 174
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a16/
LA  - en
ID  - CHEB_2007_8_2_a16
ER  - 
%0 Journal Article
%A Antanas Laurinčikas
%A Renata Macaitienė
%A Darius Šiaučiūnas
%T The joint universality for periodic zeta-functions
%J Čebyševskij sbornik
%D 2007
%P 162-174
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a16/
%G en
%F CHEB_2007_8_2_a16
Antanas Laurinčikas; Renata Macaitienė; Darius Šiaučiūnas. The joint universality for periodic zeta-functions. Čebyševskij sbornik, Tome 8 (2007) no. 2, pp. 162-174. http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a16/

[1] Math. USSR Izv., 9:3 (1975), 443–453 | DOI | MR | Zbl

[2] A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function, Kluwer Academic Publishers, Dordrecht–Boston–London, 1996 | MR

[3] J. Steuding, Value-distribution of $L$-functions and allied zeta-functions — with an emphasis on aspects of universality, Habilitationsschrift, J.-W. Goethe-Universität Frankfurt, 2003 | MR

[4] Math. Notes, 80:3–4 (2006), 532–538 | DOI | MR | Zbl

[5] B. Bagchi, “Joint universality theorem for Dirichlet $L$-functions”, Math. Z., 181 (1982), 319–334 | DOI | MR | Zbl

[6] S. M. Voronin, “On functional independence of Dirichlet $L$-functions”, Acta Arith., 27 (1975), 493–503 (in Russian) | MR | Zbl

[7] A. Kačėnas, D. Šiaučiūnas, “On the periodic zeta-function, III”, Anal. Probab. Methods Number Theory, Proc. of the Third Intern. Conf. in Honour of J. Kubilius (Palanga, 2001), eds. A. Dubickas et al., TEV, Vilnius, 2002, 99–108 | MR

[8] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968 | MR | Zbl

[9] A. Laurinčikas, K. Matsumoto, “The joint universality of zeta-functions attached to certain cusp forms”, Proc. Sci. Seminar Faculty Phys. Math., Šiauliai Univ., 5 (2002), 58–75 | MR | Zbl

[10] E. C. Titchmarsh, The Theory of Functions, Oxford University Press, Oxford, 1939

[11] J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, Amer. Math. Soc. Call. Publ., 20, Amer. Math. Soc., Providence, 1960 | MR | Zbl