Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2007_8_2_a16, author = {Antanas Laurin\v{c}ikas and Renata Macaitien\.{e} and Darius \v{S}iau\v{c}i\={u}nas}, title = {The joint universality for periodic zeta-functions}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {162--174}, publisher = {mathdoc}, volume = {8}, number = {2}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a16/} }
TY - JOUR AU - Antanas Laurinčikas AU - Renata Macaitienė AU - Darius Šiaučiūnas TI - The joint universality for periodic zeta-functions JO - Čebyševskij sbornik PY - 2007 SP - 162 EP - 174 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a16/ LA - en ID - CHEB_2007_8_2_a16 ER -
Antanas Laurinčikas; Renata Macaitienė; Darius Šiaučiūnas. The joint universality for periodic zeta-functions. Čebyševskij sbornik, Tome 8 (2007) no. 2, pp. 162-174. http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a16/
[1] Math. USSR Izv., 9:3 (1975), 443–453 | DOI | MR | Zbl
[2] A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function, Kluwer Academic Publishers, Dordrecht–Boston–London, 1996 | MR
[3] J. Steuding, Value-distribution of $L$-functions and allied zeta-functions — with an emphasis on aspects of universality, Habilitationsschrift, J.-W. Goethe-Universität Frankfurt, 2003 | MR
[4] Math. Notes, 80:3–4 (2006), 532–538 | DOI | MR | Zbl
[5] B. Bagchi, “Joint universality theorem for Dirichlet $L$-functions”, Math. Z., 181 (1982), 319–334 | DOI | MR | Zbl
[6] S. M. Voronin, “On functional independence of Dirichlet $L$-functions”, Acta Arith., 27 (1975), 493–503 (in Russian) | MR | Zbl
[7] A. Kačėnas, D. Šiaučiūnas, “On the periodic zeta-function, III”, Anal. Probab. Methods Number Theory, Proc. of the Third Intern. Conf. in Honour of J. Kubilius (Palanga, 2001), eds. A. Dubickas et al., TEV, Vilnius, 2002, 99–108 | MR
[8] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968 | MR | Zbl
[9] A. Laurinčikas, K. Matsumoto, “The joint universality of zeta-functions attached to certain cusp forms”, Proc. Sci. Seminar Faculty Phys. Math., Šiauliai Univ., 5 (2002), 58–75 | MR | Zbl
[10] E. C. Titchmarsh, The Theory of Functions, Oxford University Press, Oxford, 1939
[11] J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, Amer. Math. Soc. Call. Publ., 20, Amer. Math. Soc., Providence, 1960 | MR | Zbl