Description of hyperbolic and nonhyperbolic groups that are certain $HNN$-extensions of free groups
Čebyševskij sbornik, Tome 3 (2002) no. 1, pp. 17-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CHEB_2002_3_1_a3,
     author = {N. B. Bezverkhnyaya},
     title = {Description of hyperbolic and nonhyperbolic groups that are certain $HNN$-extensions of free groups},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {17--31},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2002_3_1_a3/}
}
TY  - JOUR
AU  - N. B. Bezverkhnyaya
TI  - Description of hyperbolic and nonhyperbolic groups that are certain $HNN$-extensions of free groups
JO  - Čebyševskij sbornik
PY  - 2002
SP  - 17
EP  - 31
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2002_3_1_a3/
LA  - ru
ID  - CHEB_2002_3_1_a3
ER  - 
%0 Journal Article
%A N. B. Bezverkhnyaya
%T Description of hyperbolic and nonhyperbolic groups that are certain $HNN$-extensions of free groups
%J Čebyševskij sbornik
%D 2002
%P 17-31
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2002_3_1_a3/
%G ru
%F CHEB_2002_3_1_a3
N. B. Bezverkhnyaya. Description of hyperbolic and nonhyperbolic groups that are certain $HNN$-extensions of free groups. Čebyševskij sbornik, Tome 3 (2002) no. 1, pp. 17-31. http://geodesic.mathdoc.fr/item/CHEB_2002_3_1_a3/

[1] M. Gromov, “Hyperbolic groups”, Essays in group theory, M.S.P.I. Publ., 8, ed. S. M. Gersten, Springer, 1987, 75–263 | MR

[2] I. Kapovich, “A non-quasiconvex subgroup of a hiperbolic groups with an exotic limit set”, New York J. Math., 1994/95, 184–195 | MR

[3] I. Kapovich, “Howson property and on-relator groups”, Communication in algebra, 27:2 (1999), 1057–1072 | MR | Zbl

[4] R. Lindon, P. Shupp, Kombinatornaya teoriya grupp, Mir, M., 1980 | MR

[5] V. N. Bezverkhnii, “Reshenie problemy sopryazhennosti slov v odnom klasse grupp”, Algoritmicheskie problemy teorii grupp i polugrupp, Tula, 1991, 4–38