Modified SEIQHRDP and machine learning prediction for the epidemics
Contributions to game theory and management, Tome 16 (2023), pp. 110-131

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is dedicated to investigating the transmission and prediction of viruses within human society. In the first phase, we augment the classical Susceptible-Exposed-Infectious-Recovered (SEIR) model by incorporating four novel states: protected status ($P$), quarantine status ($Q$), self-home status ($H$), and death status ($D$). The numerical solution of this extended model is obtained using the well-established fourth-order Runge-Kutta algorithm. Subsequently, we employ the next matrix method to calculate the basic reproduction number ($R_0$) of the infectious disease model. We substantiate the stability of the basic reproductive number through an analysis grounded in Routh-Hurwitz theory. Lastly, we turn to the application and comparison of statistical models, specifically the Autoregressive Integrated Moving Average (ARIMA) and Bidirectional Long Short-Term Memory (Bi-LSTM) models, for time series prediction.
Keywords: dynamics model, Runge-Kutta, ARIMA, Bi-LSTM model.
@article{CGTM_2023_16_a8,
     author = {Li Yike and Elena Gubar},
     title = {Modified {SEIQHRDP} and machine learning prediction for the epidemics},
     journal = {Contributions to game theory and management},
     pages = {110--131},
     publisher = {mathdoc},
     volume = {16},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2023_16_a8/}
}
TY  - JOUR
AU  - Li Yike
AU  - Elena Gubar
TI  - Modified SEIQHRDP and machine learning prediction for the epidemics
JO  - Contributions to game theory and management
PY  - 2023
SP  - 110
EP  - 131
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2023_16_a8/
LA  - en
ID  - CGTM_2023_16_a8
ER  - 
%0 Journal Article
%A Li Yike
%A Elena Gubar
%T Modified SEIQHRDP and machine learning prediction for the epidemics
%J Contributions to game theory and management
%D 2023
%P 110-131
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2023_16_a8/
%G en
%F CGTM_2023_16_a8
Li Yike; Elena Gubar. Modified SEIQHRDP and machine learning prediction for the epidemics. Contributions to game theory and management, Tome 16 (2023), pp. 110-131. http://geodesic.mathdoc.fr/item/CGTM_2023_16_a8/