Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2022_15_a9, author = {Igor Konnov}, title = {Dynamic games with incomplete knowledge in metric spaces}, journal = {Contributions to game theory and management}, pages = {109--120}, publisher = {mathdoc}, volume = {15}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2022_15_a9/} }
Igor Konnov. Dynamic games with incomplete knowledge in metric spaces. Contributions to game theory and management, Tome 15 (2022), pp. 109-120. http://geodesic.mathdoc.fr/item/CGTM_2022_15_a9/
[1] Alpcan T., Boche, H., Honig, M. and H. V. Poor (eds.), Mechanisms and Games for Dynamic Spectrum Allocation, Cambridge University Press, New York, 2014
[2] Kelly F. P., Maulloo A. and Tan D., “Rate control for communication networks: shadow prices, proportional fairness and stability”, J. Oper. Res. Soc., 49 (1998), 237–252 | DOI | Zbl
[3] Konnov I. V., “Equilibrium formulations of relative optimization problems”, Mathem. Meth. Oper. Res., 90 (2019), 137–152 | DOI | MR | Zbl
[4] Konnov I. V., “A general class of relative optimization problems”, Mathem. Meth. Oper. Res., 93 (2021), 501–520 | DOI | MR | Zbl
[5] Mazalov V. V., Mathematical Game Theory and Applications, Lan', St. Petersburg, 2010
[6] Okuguchi K., Szidarovszky F., The Theory of Oligopoly with Multi-product Firms, Springer-Verlag, Berlin, 1990 | MR | Zbl
[7] Peters H., Game Theory, Springer-Verlag, Berlin, 2015 | MR | Zbl