Dynamic games with incomplete knowledge in metric spaces
Contributions to game theory and management, Tome 15 (2022), pp. 109-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe a model of a discrete time dynamic system with active elements (players) and states in a metric space. Each state is associated with the common utility value and player shares. Coalitions of players can change the system state, but each move requires their expenses. The players may have only restricted and local knowledge about the system. We define the concept of an equilibrium state in this dynamic game and present iterative algorithms that create feasible trajectories tending to equilibrium states under rather general conditions.
Keywords: dynamic games, discrete time, incomplete knowledge, utility shares distributions, equilibrium states, solution trajectories.
@article{CGTM_2022_15_a9,
     author = {Igor Konnov},
     title = {Dynamic games with incomplete knowledge in metric spaces},
     journal = {Contributions to game theory and management},
     pages = {109--120},
     publisher = {mathdoc},
     volume = {15},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2022_15_a9/}
}
TY  - JOUR
AU  - Igor Konnov
TI  - Dynamic games with incomplete knowledge in metric spaces
JO  - Contributions to game theory and management
PY  - 2022
SP  - 109
EP  - 120
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2022_15_a9/
LA  - en
ID  - CGTM_2022_15_a9
ER  - 
%0 Journal Article
%A Igor Konnov
%T Dynamic games with incomplete knowledge in metric spaces
%J Contributions to game theory and management
%D 2022
%P 109-120
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2022_15_a9/
%G en
%F CGTM_2022_15_a9
Igor Konnov. Dynamic games with incomplete knowledge in metric spaces. Contributions to game theory and management, Tome 15 (2022), pp. 109-120. http://geodesic.mathdoc.fr/item/CGTM_2022_15_a9/

[1] Alpcan T., Boche, H., Honig, M. and H. V. Poor (eds.), Mechanisms and Games for Dynamic Spectrum Allocation, Cambridge University Press, New York, 2014

[2] Kelly F. P., Maulloo A. and Tan D., “Rate control for communication networks: shadow prices, proportional fairness and stability”, J. Oper. Res. Soc., 49 (1998), 237–252 | DOI | Zbl

[3] Konnov I. V., “Equilibrium formulations of relative optimization problems”, Mathem. Meth. Oper. Res., 90 (2019), 137–152 | DOI | MR | Zbl

[4] Konnov I. V., “A general class of relative optimization problems”, Mathem. Meth. Oper. Res., 93 (2021), 501–520 | DOI | MR | Zbl

[5] Mazalov V. V., Mathematical Game Theory and Applications, Lan', St. Petersburg, 2010

[6] Okuguchi K., Szidarovszky F., The Theory of Oligopoly with Multi-product Firms, Springer-Verlag, Berlin, 1990 | MR | Zbl

[7] Peters H., Game Theory, Springer-Verlag, Berlin, 2015 | MR | Zbl