Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2022_15_a7, author = {Zhao Guo and Dan Wang and Min Chen and Yin Li}, title = {Two-stage minimum cost spanning tree game under fuzzy optimistic coalition}, journal = {Contributions to game theory and management}, pages = {81--95}, publisher = {mathdoc}, volume = {15}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2022_15_a7/} }
TY - JOUR AU - Zhao Guo AU - Dan Wang AU - Min Chen AU - Yin Li TI - Two-stage minimum cost spanning tree game under fuzzy optimistic coalition JO - Contributions to game theory and management PY - 2022 SP - 81 EP - 95 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CGTM_2022_15_a7/ LA - en ID - CGTM_2022_15_a7 ER -
%0 Journal Article %A Zhao Guo %A Dan Wang %A Min Chen %A Yin Li %T Two-stage minimum cost spanning tree game under fuzzy optimistic coalition %J Contributions to game theory and management %D 2022 %P 81-95 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/CGTM_2022_15_a7/ %G en %F CGTM_2022_15_a7
Zhao Guo; Dan Wang; Min Chen; Yin Li. Two-stage minimum cost spanning tree game under fuzzy optimistic coalition. Contributions to game theory and management, Tome 15 (2022), pp. 81-95. http://geodesic.mathdoc.fr/item/CGTM_2022_15_a7/
[1] Aubin, J., “Cooperative fuzzy games”, Mathematics of Operations Research, 6:1 (1981), 1–13 | DOI | MR | Zbl
[2] Bergantiños, G. and Vidal-Puga, J. J., “The optimistic TU game in minimum cost spanning tree problems”, International Journal of Game Theory, 36:2 (2007), 223–239 | DOI | MR | Zbl
[3] Bird, C. G., “On cost allocation for a spanning tree: A game theoretic approach”, Networks, 6:4 (1976), 335–350 | DOI | MR | Zbl
[4] Butnariu, D., “Stability and Shapley value for an n-person fuzzy game”, Fuzzy Sets and Systems, 4:1 (1980), 63–72 | DOI | MR | Zbl
[5] Cheng, M. and Li, Y., “New Characteristic Function for two-stage Games with Spanning Tree”, Contributions to Game Theory and Management, 14 (2021), 59–71 | DOI | MR
[6] Dianqing, Y. and Dengfeng, L., “Fuzzy coalition cooperative game method”, Fuzzy cooperative game method and its application, 2021, ed. Hao, J., Science Press, Beijing, 2021, 10, 27–59 (in Chinese)
[7] Dutta, B. and Kar, A., “Cost monotonicity, consistency and minimum cost spanning tree games”, Games and Economic Behavior, 48 (2004), 223–248 | DOI | MR | Zbl
[8] Kruskal, J. B., “On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem”, Proceedings of the American Mathematical Society, 7 (1956), 48–50 | DOI | MR | Zbl
[9] Petrosyan, L. A. and Sedakov, A. A., “Two-Stage Network Games”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 4 (2014), 72–81
[10] Prim, R. C., “Shortest connection networks and some generalizations”, The Bell System Technical Journal, 36:6 (1957), 1389–1401 | DOI
[11] Shaohong, Y. and Macro, W., “fuzzy set”, Fundamentals and Applications of Fuzzy Mathematics, 2017, ed. Haiyan, Y., Chemical Industry Press, Beijing, 2017, 12, 8–41 (in Chinese)
[12] Tsurumi, M. Tanino, T. and Inuiguchi, M., “Theory and methodology: a Shapley function on a class of cooperative fuzzy games”, European Journal of Operational Research, 129:3 (2001), 596–618 | DOI | MR | Zbl
[13] Yin, L., “The dynamic Shapley Value in the game with spanning tree”, 2016 International Conference Stability and Oscillations of Nonlinear Control Systems, Pyatnitskiy's Conference, IEEE, 2016, 1–4