Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2022_15_a5, author = {Jingjing Gao and Elena Parilina}, title = {Optimal control in a multiagent opinion dynamic system}, journal = {Contributions to game theory and management}, pages = {51--59}, publisher = {mathdoc}, volume = {15}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2022_15_a5/} }
Jingjing Gao; Elena Parilina. Optimal control in a multiagent opinion dynamic system. Contributions to game theory and management, Tome 15 (2022), pp. 51-59. http://geodesic.mathdoc.fr/item/CGTM_2022_15_a5/
[1] Bauso, D. Tembine, H. and Basar, T., “Opinion Dynamics in Social Networks through Mean-Field Games”, SIAM J. Con. Opt., 54:6 (2016), 3225–3257 | DOI | MR | Zbl
[2] Dechert, D., “Optimal control problems from second-order difference equations”, J. Econ. Theory, 19:1 (1978), 50–63 | DOI | MR | Zbl
[3] Deffuant, G., Neau, D., Amblard, F. and Weisbuch, G., “Mixing beliefs among interacting agents”, Advances in Complex Systems, 3:01n04 (2000), 87–98 | DOI
[4] DeGroot, M. H., “Reaching a consensus”, J. Ame. Sta. Ass., 69:345 (1974), 118–121 | DOI | Zbl
[5] Elliott, R., Li, X. and Ni, Y. H., “Discrete time mean-field stochastic linear-quadratic optimal control problems”, Automatica, 49:11 (2013), 3222–3233 | DOI | MR | Zbl
[6] Friedkin, N. E. and Johnsen, E. C., “Social influence and opinions”, J. Mat. Soc., 15:3–4 (1990), 193–206 | DOI
[7] Gao, J. and Parilina, E., “Average-oriented opinion dynamics with the last moment of observation”, Control Processes and Stability, 8:1 (2021), 505–509 (in Russian)
[8] Gao, J. and Parilina, E. M., “Opinion Control Problem with Average-Oriented Opinion Dynamics and Limited Observation Moments”, Contributions to Game Theory and Management, 14 (2021), 103–112 | DOI | MR
[9] González-Sánchez, D. and Hernández-Lerma, O., Discrete–time stochastic control and dynamic potential games: the Euler–Equation approach, Chap. 2, Springer International Publishing, Cham, Switzerland, 2013 | MR
[10] González-Sánchez, D. and Hernández-Lerma, O., “On the Euler equation approach to discrete–time nonstationary optimal control problems”, J. Dyn. Games, 1:1 (2014), 57 | DOI | MR
[11] Hegselmann, R. and Krause, U., “Opinion dynamics and bounded confidence models, analysis, and simulation”, J. art. soc. soc. simu., 5:3 (2002)
[12] Ignaciuk, P. and Bartoszewicz, A., “Linear-quadratic optimal control strategy for periodic-review inventory systems”, Automatica, 46:12 (2010), 1982–1993 | DOI | MR | Zbl
[13] Liu, X., Li, Y. and Zhang, W., “Stochastic linear quadratic optimal control with constraint for discrete-time systems”, App. Math. Comp., 228 (2014), 264–270 | DOI | MR | Zbl
[14] Mazalov, V. and Parilina, E., “The Euler-Equation Approach in Average-Oriented Opinion Dynamics”, Mathematics, 8:3 (2020), 355 | DOI
[15] Ni, Y. H. Elliott, R. and Li, X., “Discrete-time mean-field Stochastic linear-quadratic optimal control problems, II: Infinite horizon case”, Automatica, 57 (2015), 65–77 | DOI | MR | Zbl
[16] Rogov, M. A. and Sedakov, A. A., “Coordinated Influence on the Opinions of Social Network Members”, Automation and Remote Control, 81:3 (2020), 528–547 | DOI | MR | Zbl
[17] Sedakov, A. A. and Zhen, M., “Opinion dynamics game in a social network with two influence nodes”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:1 (2019), 118–125 | DOI | MR
[18] Sznajd-Weron, K. and Sznajd, J., “Opinion evolution in closed community”, Int. J. Mod. Phy. C, 11:06 (2000), 1157–1165 | DOI