On durable-strategies dynamic game theory
Contributions to game theory and management, Tome 15 (2022), pp. 311-324

Voir la notice de l'article provenant de la source Math-Net.Ru

An empirically meaningful theory of dynamic games has to incorporate real-life phenomena. Durable strategies, which effects last for a period of time, are prevalent in real-life situations. Revenue generating investments, toxic waste disposal and purchase of durable goods are common examples of durable strategies. This paper first provides a review on durable-strategies dynamic game theory. A practically relevant advancement – random horizon durable-strategies dynamic games - yielding novel results in durable-strategies dynamic games theory is then presented. Dynamic optimization theorem, game formulations and HJB equations are derived. An illustrative example is provided. The theory and solution mechanism of durable-strategies cooperative dynamic games are also discussed.
Keywords: dynamic Game, durable-strategies, random horizon.
@article{CGTM_2022_15_a23,
     author = {David W. K. Yeung and Yingxuan Zhang},
     title = {On durable-strategies dynamic game theory},
     journal = {Contributions to game theory and management},
     pages = {311--324},
     publisher = {mathdoc},
     volume = {15},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2022_15_a23/}
}
TY  - JOUR
AU  - David W. K. Yeung
AU  - Yingxuan Zhang
TI  - On durable-strategies dynamic game theory
JO  - Contributions to game theory and management
PY  - 2022
SP  - 311
EP  - 324
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2022_15_a23/
LA  - en
ID  - CGTM_2022_15_a23
ER  - 
%0 Journal Article
%A David W. K. Yeung
%A Yingxuan Zhang
%T On durable-strategies dynamic game theory
%J Contributions to game theory and management
%D 2022
%P 311-324
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2022_15_a23/
%G en
%F CGTM_2022_15_a23
David W. K. Yeung; Yingxuan Zhang. On durable-strategies dynamic game theory. Contributions to game theory and management, Tome 15 (2022), pp. 311-324. http://geodesic.mathdoc.fr/item/CGTM_2022_15_a23/