Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2022_15_a21, author = {Peichen Ye and Yin Li and Ovanes Petrosyan}, title = {Dynamic cost-sharing game with spanning arborescence}, journal = {Contributions to game theory and management}, pages = {287--302}, publisher = {mathdoc}, volume = {15}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2022_15_a21/} }
TY - JOUR AU - Peichen Ye AU - Yin Li AU - Ovanes Petrosyan TI - Dynamic cost-sharing game with spanning arborescence JO - Contributions to game theory and management PY - 2022 SP - 287 EP - 302 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CGTM_2022_15_a21/ LA - en ID - CGTM_2022_15_a21 ER -
Peichen Ye; Yin Li; Ovanes Petrosyan. Dynamic cost-sharing game with spanning arborescence. Contributions to game theory and management, Tome 15 (2022), pp. 287-302. http://geodesic.mathdoc.fr/item/CGTM_2022_15_a21/
[1] Bergantinos, G. and Vidal-Puga, J. J., “A fair rule in minimum cost spanning tree problems”, Journal of Economic Theory, 137:1 (2007), 326–352 | DOI | MR | Zbl
[2] Bird, C. G., “On cost allocation for a spanning tree: A game theoretic approach”, Networks, 6 (1976), 335–350 | DOI | MR | Zbl
[3] Claus, A. and Kleitman, D. J., “Cost allocation for a spanning tree”, Networks, 3 (1973), 289–304 | DOI | MR | Zbl
[4] Dutta, B. and Kar, A., “Cost monotonicity, consistency and minimum cost spanning tree games”, Games Econom Behav., 48 (2004), 223–248 | DOI | MR | Zbl
[5] Dutta, B. and Mishra, D., “Minimum cost arborescences”, Games Econom Behav, 74 (2012), 120–143 | DOI | MR | Zbl
[6] Min, Ch. Peichen, Y. and Yin, L., “Dynamic “optimistic” characteristic function in the game with spanningtree”, 2022 International Conference Stability and Oscillations of Nonlinear Control Systems, Pyatnitskiy's Conference, IEEE, 2022, 5427–5432
[7] Petrosyan, L. A. and Danilov, N. N., “Stability of solutions in non-zero sum differential games with transferable payoffs”, Viestnik of Leningrad Universtiy, 1 (1979), 52–59 | MR | Zbl
[8] Petrosyan, L. A., Sedakov, A. A. and Bochkarev, A. O., “Two-stage network games”, Matematicheskaya teoriya igr i ee prilozheniya, 5:4 (2013), 84–104 | MR | Zbl
[9] Yin, Li., “The dynamic Shapley Value in the game with spanning tree”, 2016 International Conference Stability and Oscillations of Nonlinear Control Systems, Pyatnitskiy's Conference, IEEE, 2016, 1–4