Optimal control in the network model of bi-virus propagation
Contributions to game theory and management, Tome 15 (2022), pp. 265-286.

Voir la notice de l'article provenant de la source Math-Net.Ru

This thesis is devoted to the spread of virus in human society. First, we modified the original basic epidemiological model, and divide the system into $M$ different types. The optimal control problem is formulated for the changes of compartments in different states. The total cost is then minimized, the Pontryagin maximum principle is used to solve this nonlinear optimal control problem. Next, we prove that the optimal policy has the simple structure. Finally, we fit the propagation process of this model using Matlab. Consider the situation where there are only two types of virus in the system, and compare the two types of virus appear at the same time and at different times.
Keywords: optimal control, virus propagation, epidemic model.
@article{CGTM_2022_15_a20,
     author = {Liu Xiuxiu and Elena Gubar},
     title = {Optimal control in the network model of bi-virus propagation},
     journal = {Contributions to game theory and management},
     pages = {265--286},
     publisher = {mathdoc},
     volume = {15},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2022_15_a20/}
}
TY  - JOUR
AU  - Liu Xiuxiu
AU  - Elena Gubar
TI  - Optimal control in the network model of bi-virus propagation
JO  - Contributions to game theory and management
PY  - 2022
SP  - 265
EP  - 286
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2022_15_a20/
LA  - en
ID  - CGTM_2022_15_a20
ER  - 
%0 Journal Article
%A Liu Xiuxiu
%A Elena Gubar
%T Optimal control in the network model of bi-virus propagation
%J Contributions to game theory and management
%D 2022
%P 265-286
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2022_15_a20/
%G en
%F CGTM_2022_15_a20
Liu Xiuxiu; Elena Gubar. Optimal control in the network model of bi-virus propagation. Contributions to game theory and management, Tome 15 (2022), pp. 265-286. http://geodesic.mathdoc.fr/item/CGTM_2022_15_a20/

[1] Bichara, D., Iggidr, A. and Sallet, G., “Global analysis of multi-strains SIS, SIR and MSIR epidemic models”, J. Appl. Math. Comput., 44 (2014), 273–292 | DOI | MR | Zbl

[2] Chiang, Alpha C., Elements of Dynamic Optimization, McGraw-Hill, New York, 1992

[3] Eshghi, S., Khouzani, M. H. R., Sarkar, S. and Venkatesh, S. S., “Optimal Patching in Clustered Malware Epidemics”, IEEE/ACM Transactions on Networking, 24:1 (2016), 283–298 | DOI | MR

[4] Grass, D., Caulkins, J., Feichtinger, G., Tragler, G. and Behrens, D., Optimal Control of Nonlinear Processes: With Applications in Drugs, Corruption, and Terror, 2008 | DOI | MR | Zbl

[5] Gubar, E., Kumacheva, S., Zhitkova, E. and Porokhnyavaya, O., “Impact of Propagation Information in the Model of Tax Audit”, Recent Advances in Game Theory and Applications. Static Dynamic Game Theory: Foundations Applications, eds. Petrosyan, L., Mazalov, V., Birkhäuser, Cham, 2016 | DOI | MR | Zbl

[6] Gubar, E., Policardo, L., Carrera, E. and Taynitskiy, V., Optimal Lockdown Policies driven by Socioeconomic Costs, 2021, arXiv: 2105.08349

[7] Gubar, E. and Zhu, Q., “Optimal control of influenza epidemic model with virus mutations”, 2013 European Control Conference (ECC), 3125–3130 | DOI

[8] Khouzani, M. H. R., Sarkar, S. and Altman, E., “Optimal control of epidemic evolution”, 2011 Proceedings IEEE INFOCOM, 2011, 1683–1691 | DOI

[9] Khouzani, M. H. R., Sarkar, S. and Altman, E., “Maximum Damage Malware Attack in Mobile Wireless Networks”, IEEE/ACM Transactions on Networking, 20:5, 1347–1360 | DOI | MR

[10] Li, Y., Hui, P., Jin, D., Su, L. and Zeng, L., “An optimal distributed malware defense system for mobile networks with heterogeneous devices”, 2011 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, 2011, 314–322 | DOI

[11] Mathieu, E., Ritchie, H., Rodés-Guirao, L., Appel, C. Giattino, C., Hasell, J., Macdonald, B., Dattani, S., Beltekian, D., Ortiz-Ospina, E. and Roser, M., Coronavirus Pandemic (COVID-19), 2020 (accessed 01.11.2022) https://ourworldindata.org/coronavirus

[12] Pastor-Satorras, R., Castellano, C., Van Mieghem, P. and Vespignani, A., “Epidemic processes in complex networks”, Reviews of Modern Physics, 87:3 (2015), 925 | DOI | MR

[13] Shakkottai, S. and Srikant, R., “Peer to Peer Networks for Defense Against Internet Worms”, IEEE Journal on Selected Areas in Communications, 25(9) (2008), 1745–1752 | DOI

[14] Taynitskiy, V., Gubar, E., and Zhu, Q., “Optimal Impulse Control of SIR Epidemics Over Scale-Free Networks”, Game Theory for Networking Applications, EAI/Springer Innovations in Communication and Computing, eds. Song, J., Li, H., Coupechoux, M., Springer, Cham, 2019 | DOI | MR