Optimal control in the network model of bi-virus propagation
Contributions to game theory and management, Tome 15 (2022), pp. 265-286

Voir la notice de l'article provenant de la source Math-Net.Ru

This thesis is devoted to the spread of virus in human society. First, we modified the original basic epidemiological model, and divide the system into $M$ different types. The optimal control problem is formulated for the changes of compartments in different states. The total cost is then minimized, the Pontryagin maximum principle is used to solve this nonlinear optimal control problem. Next, we prove that the optimal policy has the simple structure. Finally, we fit the propagation process of this model using Matlab. Consider the situation where there are only two types of virus in the system, and compare the two types of virus appear at the same time and at different times.
Keywords: optimal control, virus propagation, epidemic model.
@article{CGTM_2022_15_a20,
     author = {Liu Xiuxiu and Elena Gubar},
     title = {Optimal control in the network model of bi-virus propagation},
     journal = {Contributions to game theory and management},
     pages = {265--286},
     publisher = {mathdoc},
     volume = {15},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2022_15_a20/}
}
TY  - JOUR
AU  - Liu Xiuxiu
AU  - Elena Gubar
TI  - Optimal control in the network model of bi-virus propagation
JO  - Contributions to game theory and management
PY  - 2022
SP  - 265
EP  - 286
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2022_15_a20/
LA  - en
ID  - CGTM_2022_15_a20
ER  - 
%0 Journal Article
%A Liu Xiuxiu
%A Elena Gubar
%T Optimal control in the network model of bi-virus propagation
%J Contributions to game theory and management
%D 2022
%P 265-286
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2022_15_a20/
%G en
%F CGTM_2022_15_a20
Liu Xiuxiu; Elena Gubar. Optimal control in the network model of bi-virus propagation. Contributions to game theory and management, Tome 15 (2022), pp. 265-286. http://geodesic.mathdoc.fr/item/CGTM_2022_15_a20/