Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2022_15_a2, author = {Nikolay A. Ermolin and Vitalia A. Khitraya and Andrey V. Khitryi and Vladimir V. Mazalov and Natalia N. Nikitina}, title = {Modeling of the city's transport network using game-theoretic methods on the example of {Petrozavodsk}}, journal = {Contributions to game theory and management}, pages = {18--31}, publisher = {mathdoc}, volume = {15}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2022_15_a2/} }
TY - JOUR AU - Nikolay A. Ermolin AU - Vitalia A. Khitraya AU - Andrey V. Khitryi AU - Vladimir V. Mazalov AU - Natalia N. Nikitina TI - Modeling of the city's transport network using game-theoretic methods on the example of Petrozavodsk JO - Contributions to game theory and management PY - 2022 SP - 18 EP - 31 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CGTM_2022_15_a2/ LA - en ID - CGTM_2022_15_a2 ER -
%0 Journal Article %A Nikolay A. Ermolin %A Vitalia A. Khitraya %A Andrey V. Khitryi %A Vladimir V. Mazalov %A Natalia N. Nikitina %T Modeling of the city's transport network using game-theoretic methods on the example of Petrozavodsk %J Contributions to game theory and management %D 2022 %P 18-31 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/CGTM_2022_15_a2/ %G en %F CGTM_2022_15_a2
Nikolay A. Ermolin; Vitalia A. Khitraya; Andrey V. Khitryi; Vladimir V. Mazalov; Natalia N. Nikitina. Modeling of the city's transport network using game-theoretic methods on the example of Petrozavodsk. Contributions to game theory and management, Tome 15 (2022), pp. 18-31. http://geodesic.mathdoc.fr/item/CGTM_2022_15_a2/
[1] Arrowsmith, G., “A behavioural approach to obtaining a doubly constrained trip distribution model”, Journal of the Operational Research Society, 24:1 (1973), 101–111 | DOI
[2] Avrachenkov, K., Kondratev, A. Yu., Mazalov, V. V. and Rubanov, D. G., “Network partitioning as cooperative games”, Computational social networks, 5:11 (2018), 1–28
[3] Ford, W., Lien, J. W., Mazalov, V. V. and Zheng, J., “Riding to Wall Street: determinants of commute time using Citi Bike”, International Journal of Logistics Research and Applications, 22:5 (2019), 473–490 | DOI
[4] Gasnikov, A. V. (ed.), Introduction to mathematical modeling of traffic flows, MCCME Publishing House, M., 2013, 196 pp. (in Russian)
[5] Kerner, B. S., Introduction to modern traffic flow theory and control. The long road to three-phase traffic theory, Springer, 2009 | Zbl
[6] Mazalov V. V. and Khitraya V. A., “A Modified Myerson Value for Determining the Centrality of Graph Vertices”, Automation and Remote Control, 82:1 (2021), 145–159 | DOI | MR | Zbl
[7] Mazalov, V. V. and Trukhina, L. I., “Generating functions and the Myerson vector in communication networks”, Diskr. Mat., 26:3 (2014), 65–75 | DOI | MR | Zbl
[8] Nagurney, A., Network Economics: A Variational Inequality Approach, Kluwer Academic Publishers, Dordrecht, 1999 | MR
[9] Nesterov, Yu. and de Palma, A., “Stationary dynamic solutions in congested transportation networks: summary and perspectives”, Networks and Spatial Economics, 3 (2003), 371–395 | DOI
[10] Nurminsky, E. A. and Shamray, N. B., “Predictive modeling of car traffic in Vladivostok”, Proceedings of the Moscow Institute of Physics and Technology, 2:4(8) (2010), 119–129 (in Russian)
[11] Sheffy, Y., Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods, Prentice-Hall, Englewood Cliffs, N.J., 1985
[12] Shvetsov, V. I., “Mathematical Modeling of Traffic Flows”, Automation and Remote Control, 64 (2003), 1651–1689 | DOI | MR | Zbl
[13] Shvetsov, V. I., “Algorithms for distributing traffic flows”, Automation and Remote Control, 70 (2009), 1728–1736 | DOI | MR | Zbl
[14] Wardrop, J., “Some Theoretical Aspects of Road Traffic Research”, Proceedings of the Institute of Civil Engineers, 1952
[15] Wilson, A. G., “A statistical theory of spatial distribution models”, Transportation research, 1:3 (1967), 253–269 | DOI