Vector epidemic model of malaria with nonconstant-size population
Contributions to game theory and management, Tome 15 (2022), pp. 200-217.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents the dynamic characteristics of a vector-host epidemic model with direct transmission. The malaria propagation model is defined by a system of ordinary differential equations. The host population is divided into four subpopulations: susceptible, exposed, infected and recovered, and the vector population is divided into three subpopulations: susceptible, exposed and infected. Using the theory of the Lyapunov functions, certain sufficient conditions for the global stability of the disease-free equilibrium and endemic equilibrium are obtained. The basic reproduction number that characterizes the evolution of the epidemic in the population was found. Finally, numerical simulations are carried out to study the influence of the key parameters on the spread of vector-borne disease.
Keywords: malaria, mathematical modeling of epidemics, mosquito population, subpopulations, reproductive number, endemic equilibrium.
@article{CGTM_2022_15_a15,
     author = {Serigne Modou Ndiaye},
     title = {Vector epidemic model of malaria with nonconstant-size population},
     journal = {Contributions to game theory and management},
     pages = {200--217},
     publisher = {mathdoc},
     volume = {15},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2022_15_a15/}
}
TY  - JOUR
AU  - Serigne Modou Ndiaye
TI  - Vector epidemic model of malaria with nonconstant-size population
JO  - Contributions to game theory and management
PY  - 2022
SP  - 200
EP  - 217
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2022_15_a15/
LA  - en
ID  - CGTM_2022_15_a15
ER  - 
%0 Journal Article
%A Serigne Modou Ndiaye
%T Vector epidemic model of malaria with nonconstant-size population
%J Contributions to game theory and management
%D 2022
%P 200-217
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2022_15_a15/
%G en
%F CGTM_2022_15_a15
Serigne Modou Ndiaye. Vector epidemic model of malaria with nonconstant-size population. Contributions to game theory and management, Tome 15 (2022), pp. 200-217. http://geodesic.mathdoc.fr/item/CGTM_2022_15_a15/

[1] Baygents, G. and Bani-Yaghoub, M., “A mathematical model to analyze spread of hemorrhagic disease in white-tailed deer population”, Journal of Applied Mathematics and Physics, 5 (2017), 2262–2282 | DOI

[2] Cai, L., Tuncer, N. and Martcheva, M., “How does within-host dynamics affect population-level dynamics? Insights from an immuno-epidemiological model of malaria”, Mathematical Methods in the Applied Sciences, 40:18 (2017), 6424–6450 | DOI | MR | Zbl

[3] Diekmann, O., Heesterbeek, A. P. and Roberts, M. G., “The construction of next-generation matrices for compartmental epidemic models”, J. R. Soc. Interface, 7 (2010), 873–885 | DOI

[4] Ghosha, M., Lasharib, A. A. and Li, X.-Z., “Biological control of malaria: A mathematical model”, Applied mathematics and computation, 219:15 (2013), 7923–7939 | DOI | MR

[5] Gurarie, D., Karl, S., Zimmerman, P. A., King, C. H., St. Pierre, T. G. and Davis, T. M. E., “Dynamical mathematical modeling of malaria infection with innate and adaptive immunity in individuals and agent-based communities”, PLoS ONE, 7:3 (2012), e34040 | DOI

[6] Jones, J. H., Notes on R0, Department of Anthropological Sciences, Stanford, CA, USA, 2007 (accessed 01.11.2022) https://web.stanford.edu/jhj1/teachingdocs/Jones-on-R0.pdf

[7] Kermack, W. O. and McKendrick, A. G., “A contribution to the mathematical theory of epidemics”, Proc. R. Soc. Lond. A, 115 (1927), 700–721 | DOI

[8] Maliki, O., Romanus, N. and Onyemegbulem, B., “A mathematical modelling of the effect of treatment in the control of malaria in a population with infected immigrants”, Applied Mathematics, 9 (2018), 1238–1257 | DOI

[9] Macdonald, G., The epidemiology and control of malaria, Oxford University Press, London–New York, 1957

[10] Mandal, S., Sarkar, R. R. and Sinha, S., “Mathematical models of malaria — a review”, Malaria Journal, 10 (2011), 202 | DOI | MR

[11] Martens, W. J., Niessen, L. W., Rotmans, J., Jetten, T. H. and McMichael, A. J., “Potential Impact of Global Climate Change on Malaria Risk”, Environ Health Perspect, 103:5 (1995), 458–464 | DOI

[12] Ndiaye, S. M. and Parilina, E. M., “An epidemic model of malaria without and with vaccination. Pt 1. A model of malaria without vaccination”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 18:2 (2022), 263–277 (in Russian) | DOI | MR

[13] Ross, R., “An application of the theory of probabilities to the study of a priori pathometry. — Part I”, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 92:638 (1916), 204–230

[14] Van den Driessche, P., “Reproduction numbers of infectious disease models”, Infect. Dis. Model., 2:3 (2017), 288–303

[15] Wei, J., Lashari, A. A., Aly, S., Hattaf, K., Zaman, G., Jung, I. H. and Li, X.-Z., “Presentation of Malaria Epidemics Using Multiple Optimal Controls”, Journal of Applied Mathematics, 2012, 946504 | MR

[16] Zhang, T., Ibrahim, M. M., Kamran, M. A., Naeem, M., Malik, M., Kim, S. and Jung, I. H., “Impact of Awareness to Control Malaria Disease: A Mathematical Modeling Approach”, Complexity, 2020, 8657410