Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2022_15_a15, author = {Serigne Modou Ndiaye}, title = {Vector epidemic model of malaria with nonconstant-size population}, journal = {Contributions to game theory and management}, pages = {200--217}, publisher = {mathdoc}, volume = {15}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2022_15_a15/} }
Serigne Modou Ndiaye. Vector epidemic model of malaria with nonconstant-size population. Contributions to game theory and management, Tome 15 (2022), pp. 200-217. http://geodesic.mathdoc.fr/item/CGTM_2022_15_a15/
[1] Baygents, G. and Bani-Yaghoub, M., “A mathematical model to analyze spread of hemorrhagic disease in white-tailed deer population”, Journal of Applied Mathematics and Physics, 5 (2017), 2262–2282 | DOI
[2] Cai, L., Tuncer, N. and Martcheva, M., “How does within-host dynamics affect population-level dynamics? Insights from an immuno-epidemiological model of malaria”, Mathematical Methods in the Applied Sciences, 40:18 (2017), 6424–6450 | DOI | MR | Zbl
[3] Diekmann, O., Heesterbeek, A. P. and Roberts, M. G., “The construction of next-generation matrices for compartmental epidemic models”, J. R. Soc. Interface, 7 (2010), 873–885 | DOI
[4] Ghosha, M., Lasharib, A. A. and Li, X.-Z., “Biological control of malaria: A mathematical model”, Applied mathematics and computation, 219:15 (2013), 7923–7939 | DOI | MR
[5] Gurarie, D., Karl, S., Zimmerman, P. A., King, C. H., St. Pierre, T. G. and Davis, T. M. E., “Dynamical mathematical modeling of malaria infection with innate and adaptive immunity in individuals and agent-based communities”, PLoS ONE, 7:3 (2012), e34040 | DOI
[6] Jones, J. H., Notes on R0, Department of Anthropological Sciences, Stanford, CA, USA, 2007 (accessed 01.11.2022) https://web.stanford.edu/jhj1/teachingdocs/Jones-on-R0.pdf
[7] Kermack, W. O. and McKendrick, A. G., “A contribution to the mathematical theory of epidemics”, Proc. R. Soc. Lond. A, 115 (1927), 700–721 | DOI
[8] Maliki, O., Romanus, N. and Onyemegbulem, B., “A mathematical modelling of the effect of treatment in the control of malaria in a population with infected immigrants”, Applied Mathematics, 9 (2018), 1238–1257 | DOI
[9] Macdonald, G., The epidemiology and control of malaria, Oxford University Press, London–New York, 1957
[10] Mandal, S., Sarkar, R. R. and Sinha, S., “Mathematical models of malaria — a review”, Malaria Journal, 10 (2011), 202 | DOI | MR
[11] Martens, W. J., Niessen, L. W., Rotmans, J., Jetten, T. H. and McMichael, A. J., “Potential Impact of Global Climate Change on Malaria Risk”, Environ Health Perspect, 103:5 (1995), 458–464 | DOI
[12] Ndiaye, S. M. and Parilina, E. M., “An epidemic model of malaria without and with vaccination. Pt 1. A model of malaria without vaccination”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 18:2 (2022), 263–277 (in Russian) | DOI | MR
[13] Ross, R., “An application of the theory of probabilities to the study of a priori pathometry. — Part I”, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 92:638 (1916), 204–230
[14] Van den Driessche, P., “Reproduction numbers of infectious disease models”, Infect. Dis. Model., 2:3 (2017), 288–303
[15] Wei, J., Lashari, A. A., Aly, S., Hattaf, K., Zaman, G., Jung, I. H. and Li, X.-Z., “Presentation of Malaria Epidemics Using Multiple Optimal Controls”, Journal of Applied Mathematics, 2012, 946504 | MR
[16] Zhang, T., Ibrahim, M. M., Kamran, M. A., Naeem, M., Malik, M., Kim, S. and Jung, I. H., “Impact of Awareness to Control Malaria Disease: A Mathematical Modeling Approach”, Complexity, 2020, 8657410