Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2021_14_a24, author = {Fernando Tohm\'e and Gianluca Caterina and Rocco Gangle}, title = {A categorical characterization of a~~~${\scriptsize1}\!\!\!\!\bigcirc$-iteratively defined state of common knowledge}, journal = {Contributions to game theory and management}, pages = {329--341}, publisher = {mathdoc}, volume = {14}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2021_14_a24/} }
TY - JOUR AU - Fernando Tohmé AU - Gianluca Caterina AU - Rocco Gangle TI - A categorical characterization of a~~~${\scriptsize1}\!\!\!\!\bigcirc$-iteratively defined state of common knowledge JO - Contributions to game theory and management PY - 2021 SP - 329 EP - 341 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CGTM_2021_14_a24/ LA - en ID - CGTM_2021_14_a24 ER -
%0 Journal Article %A Fernando Tohmé %A Gianluca Caterina %A Rocco Gangle %T A categorical characterization of a~~~${\scriptsize1}\!\!\!\!\bigcirc$-iteratively defined state of common knowledge %J Contributions to game theory and management %D 2021 %P 329-341 %V 14 %I mathdoc %U http://geodesic.mathdoc.fr/item/CGTM_2021_14_a24/ %G en %F CGTM_2021_14_a24
Fernando Tohmé; Gianluca Caterina; Rocco Gangle. A categorical characterization of a~~~${\scriptsize1}\!\!\!\!\bigcirc$-iteratively defined state of common knowledge. Contributions to game theory and management, Tome 14 (2021), pp. 329-341. http://geodesic.mathdoc.fr/item/CGTM_2021_14_a24/
[1] Aumann R., “Agreeing to Disagre”, Annals of Statistics, 4 (1976), 1236–1239 | MR | Zbl
[2] Barwise J., “Three Views of Common Knowledge”, Proceedings of the Second Conference on Theoretical Aspects of Reasoning About Knowledge, ed. M. Vardi, Morgan Kaufman, 1988, 365–379 | MR
[3] Barwise J., Moss L., Vicious Circles: On the Mathematics of Non-Wellfounded Phenomena, CSLI Publications, 1996 | MR | Zbl
[4] Bicchieri C., Rationality and Coordination, Cambridge University Press, 1993 | MR | Zbl
[5] Bonanno G., Battigalli P., “Recent Results on Belief, Knowledge and the Epistemic Foundations of Game Theory”, Research in Economics, 53 (1999), 149–225 | MR
[6] Brandenburger A., Dekel E., “Common Knowledge with Probability $1$”, Journal of Mathematical Economics, 16 (1987), 237–245 | MR | Zbl
[7] Brandom R., A Spirit of Trust: A Reading of Hegel's Phenomenology, Belknap/Harvard University Press, 2019 | MR
[8] Echenique F., “A Short and Constructive Proof of Tarski's Fixed-Point Theorem”, International Journal of Game Theory, 33 (2005), 215–218 | MR | Zbl
[9] Fagin R., Halpern J., Moses Y., Vardi M., Reasoning About Knowledge, MIT Press, 1995 | MR | Zbl
[10] Geanakoplos J., “Common Knowledge”, Handbook of Game Theory, v. 2, eds. R. Aumann, S. Hart, North-Holland, 1994, 1438–1496 | MR
[11] Heifetz A., “Iterative and Fixed Point Common Belief”, Journal of Philosophical Logic, 28 (1999), 61–79 | MR | Zbl
[12] Hintikka J., Knowledge and Belief, Cornell University Press, 1962
[13] Johnston P., Sketches of an Elephant: A Topos Theory Compendium, Oxford University Press, 2002 | MR
[14] Manchak J.B., Roberts B.W., “Supertasks”, The Stanford Encyclopedia of Philosophy, Winter 2016 Edition, ed. E. Zalta, 2016 https://plato.stanford.edu/archives/win2016/entries/spacetime-supertasks/ | Zbl
[15] Lewis D., Convention: A Philosophical Study, Harvard University Press, 1969
[16] Lolli G., “Metamathematical investigations on the theory of Grossone”, Applied Mathematics and Computation, 255 (2015), 3–14 | MR | Zbl
[17] Mac Lane S., Categories for the Working Mathematician, Springer-Verlag, 2013 | MR
[18] Rizza D., “A Study of Mathematical Determination through Bertrand's Paradox”, Philosophia Mathematica, 26 (2018), 375–395 | MR | Zbl
[19] Rizza D., “Numerical Methods for Infinite Decision-making Processes”, Int. Journal of Unconventional Computing, 14 (2019), 139–158
[20] Manes E., Arbib M., Algebraic Approaches to Program Semantics, Springer-Verlag, 1986 | MR | Zbl
[21] Meyer J.-J.Ch., van der Hoek W., Epistemic Logic for Computer Science and Artificial Intelligence, Cambridge University Press, 1995 | MR
[22] Milewski B., Category Theory for Programmers, Creative Commons, 2017
[23] Moss L., Viglizzo I., “Harsanyi Type Spaces and Final Coalgebras constructed from Satisfied Theories”, Electronic Notes in Theoretical Computer Science, 106 (2004), 279–295 | MR | Zbl
[24] Osborne M., Rubinstein A., A Course in Game Theory, MIT Press, 1994 | MR | Zbl
[25] Sergeyev Y., “A New Applied Approach for Executing Computations with Infinite and Infinitesimal Quantities”, Informatica, 19 (2008), 567–596 | MR | Zbl
[26] Sergeyev Y., Arithmetic of Infinity, 2nd edition, Edizioni Orizzonti Meridionali, 2013 | MR
[27] Sergeyev Y., “Novel local tuning techniques for speeding up one-dimensional algorithms in expensive global optimization using Lipschitz derivatives”, Journal of Computational and Applied Mathematics, 383:1 (2020), 113–134 | MR
[28] Sergeyev Y., “Numerical Infinities and Infinitesimals: Methodology, Applications, and Repercussions on Two Hilbert Problems”, EMS Surveys in Mathematical Sciences, 4 (2017), 219–320 | MR | Zbl
[29] Spivak D., Category Theory for the Sciences, MIT Press, 2014 | MR | Zbl
[30] Tohmé F., Caterina G., Gangle R., “Computing Truth Values in the Topos of Infinite Peirce's $\alpha$-Existential Graphs”, Applied Mathematics and Computation, 2020 (to appear) | MR
[31] Vassilakis S., “Some Economic Applications of Scott Domains”, Mathematical Social Sciences, 24 (1992), 173–208 | MR | Zbl