Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2021_14_a21, author = {Dmitrii Lozovanu and Stefan Pickl}, title = {On the existence and determining stationary {Nash} equilibria for switching controller stochastic games}, journal = {Contributions to game theory and management}, pages = {290--301}, publisher = {mathdoc}, volume = {14}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2021_14_a21/} }
TY - JOUR AU - Dmitrii Lozovanu AU - Stefan Pickl TI - On the existence and determining stationary Nash equilibria for switching controller stochastic games JO - Contributions to game theory and management PY - 2021 SP - 290 EP - 301 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CGTM_2021_14_a21/ LA - en ID - CGTM_2021_14_a21 ER -
%0 Journal Article %A Dmitrii Lozovanu %A Stefan Pickl %T On the existence and determining stationary Nash equilibria for switching controller stochastic games %J Contributions to game theory and management %D 2021 %P 290-301 %V 14 %I mathdoc %U http://geodesic.mathdoc.fr/item/CGTM_2021_14_a21/ %G en %F CGTM_2021_14_a21
Dmitrii Lozovanu; Stefan Pickl. On the existence and determining stationary Nash equilibria for switching controller stochastic games. Contributions to game theory and management, Tome 14 (2021), pp. 290-301. http://geodesic.mathdoc.fr/item/CGTM_2021_14_a21/
[1] Boyd S., Vandenberghe L., Convex optimization, Cambridge University Press, 2004 | MR | Zbl
[2] Bayraktar E., Cosso A., Pham H., “Robost feedback switching control: Dynamic programming and viscosity solutions”, SIAM Journal on Control and Optimization, 54 (2016), 2594–2628 | MR | Zbl
[3] Dasgupta P., Maskin E., “The existence of an equilibrium in discontinuous economic games”, The Review of Economic Studies, 53 (1986), 1–26 | MR | Zbl
[4] Dubey D., Neogy S.G.K., Ghorui D., “Completely mixed strategies for generalzed bimatrix and switching controller stochastic games”, Dynamic games and Applications, 7:4 (2017), 535–554 | MR | Zbl
[5] Fan K., “Application of a theorem concerned sets with convex sections”, Math. Ann., 1963 (1966), 189–203 | MR
[6] Fink A., “Equilibrium in a Stochastic n-Person Game”, Journal of Science of the Hiroshima University, 28 (1964), 89–93 | MR | Zbl
[7] Flesch J., Thuijsman F., Vrieze K., “Cyclic Markov equilibria in stochastic games”, International Journal of Game Theory, 26 (1997), 303–314 | MR | Zbl
[8] Kallenberg L., Markov Decision Processes, University of Leiden, 2016
[9] Krishnamurthy N., Neogy S. K., “On Lemke processibility of LCP formulations for solving discounted swiching control stochastic games”, Annals of Operations Research, 295:2 (2020), 633–644 | MR | Zbl
[10] Lozovanu D., “Stationary Nash equilibria for average stochastic positional games”, Frontiers of Dynamic Games, Static and Dynamic Game Theory: Fondation and Aplication, Chapter 9, eds. L. Petrossyan et al., Springer, 2018, 139–163 | MR
[11] Lozovanu D., Pickl S., “Pure Stationary Nash Equilibria for Discounted Stochastic Positional Games”, Contributions to game theory and management, 12 (2018), 246–260 | MR
[12] Lozovanu D., Pickl S., “On the existence of stationary Nash equilibrium in average stochastic games with finite state and action spaces”, Contributions to game theory and management, 13 (2020), 304–323
[13] Rosenberg D., Solan E., Vieille N., “Stochastic games with a single controller and incomplete information”, SIAM Journal on Control and Optimization, 43:1 (2004), 86–110 | MR | Zbl
[14] Schultz T., “Linear complimentary and discounted switching-controller stochastic games”, Journal of Optimization Theory and Applications, 73 (1992), 89–99 | MR | Zbl
[15] Takahashi M., “Equilibrium Points of Stochastic Non-Cooperative n-Person Games”, Journal of Science of the Hiroshima University, 28 (1964), 95–99 | MR | Zbl
[16] Thuijsman F., Raghavan T. E. S., “Perfect information stochastic games and related classes”, International Journal of Game Theory, 26 (1997), 403–408 | MR | Zbl