Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2021_14_a14, author = {Anna A. Ivashko}, title = {Optimal stopping in the balls-and-bins problem}, journal = {Contributions to game theory and management}, pages = {183--191}, publisher = {mathdoc}, volume = {14}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2021_14_a14/} }
Anna A. Ivashko. Optimal stopping in the balls-and-bins problem. Contributions to game theory and management, Tome 14 (2021), pp. 183-191. http://geodesic.mathdoc.fr/item/CGTM_2021_14_a14/
[1] Bearden J. N., “A new secretary problem with rank-based selection and cardinal payoffs”, Journal of Mathematical Psychology, 50:1 (2006), 58–59 | MR | Zbl
[2] Kolchin V. F., Random allocations, Winston, Washington, 1978 | MR | Zbl
[3] Shepp L. A., “Explicit solutions to some problems of optimal stopping”, Ann. Math. Statist., 40 (1969), 993–1010 | MR | Zbl
[4] Tamaki M., “Optimal stopping on trajectories and the ballot problem”, Journal of Applied Probability, 38 (2001), 946–959 | MR | Zbl
[5] Tijms H., “One-Step Improvement Ideas and Computational Aspects”, Markov Decision Processes in Practice, International Series in Operations Research Management Science, 248, eds. Boucherie R., N. Dijk van, Springer, Cham, 2017, 3–32 | MR | Zbl