Models of optimal control in Tullock rent-seeking game
Contributions to game theory and management, Tome 13 (2020), pp. 132-141.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper constructs and investigates the models of the optimal control in the Tullock rent-seeking game. There are two types of control in the paper: an unlimited, but expensive resource, and a cheap, but an infinitely small resource. Before the game starts, players discuss parameters of the game, and then choose their strategies simultaneously and independently, competing for better rent. We consider two types of players and two types of communication and analyze combinations.
Keywords: optimal control, Tullock rent-seeking game, parametrized equilibrium, beliefs.
@article{CGTM_2020_13_a6,
     author = {Denis N. Fedyanin},
     title = {Models of optimal control in {Tullock} rent-seeking game},
     journal = {Contributions to game theory and management},
     pages = {132--141},
     publisher = {mathdoc},
     volume = {13},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2020_13_a6/}
}
TY  - JOUR
AU  - Denis N. Fedyanin
TI  - Models of optimal control in Tullock rent-seeking game
JO  - Contributions to game theory and management
PY  - 2020
SP  - 132
EP  - 141
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2020_13_a6/
LA  - en
ID  - CGTM_2020_13_a6
ER  - 
%0 Journal Article
%A Denis N. Fedyanin
%T Models of optimal control in Tullock rent-seeking game
%J Contributions to game theory and management
%D 2020
%P 132-141
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2020_13_a6/
%G en
%F CGTM_2020_13_a6
Denis N. Fedyanin. Models of optimal control in Tullock rent-seeking game. Contributions to game theory and management, Tome 13 (2020), pp. 132-141. http://geodesic.mathdoc.fr/item/CGTM_2020_13_a6/

[1] Tullock G., “Efficient rent-seeking”, Toward a theory of the rent-seeking society, eds. Buchanan J., Tollison R., Tullock G., Texas A $\ $ M Press, College Station, 1980, 97–112

[2] Aumann R. J., “Interactive epistemology I: Knowledge”, International Journal of Game Theory, 28:3 (1999), 263–300 | DOI | MR | Zbl

[3] Harsanyi J. C., “Games with Incomplete Information Played by Bayesian Players, I-III”, Management Science, 14:3 (1967–1968), 159–183 ; 14:5, 320–334 ; 14:7, 486–502 | DOI | MR | DOI | MR | DOI | MR

[4] Novikov D., Chkhartishvili A., “Reflexion Control: Mathematical models”, Communications in Cybernetics, Systems Science, and Engineering, 5, CRC Press, 2014, 298

[5] DeGroot M. H., “Reaching a Consensus”, Journal of American Statistical Association, 69:345 (1974), 118–121 | DOI | Zbl

[6] Fedyanin D., “Information Control in Reflexive Games with players Preliminary Informational Interactions”, Proceedings of the 1st International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency, SUMMA2019 (Lipetsk, 2019), IEEE, 188–193

[7] Gubanov D. A., Novikov D. A., Chkhartishvili A. G., “Informational influence and information control models in social networks”, Probl. Upr., 2009, no. 5, 28–35 ; Autom. Remote control, 72:7 (2011), 1557–1567 | MR | DOI | Zbl

[8] Fedyanin D., “Reflexive and epistemic properties of the Tullock rent-seeking game”, Frontiers of Dynamic Games, Springer, 2020 (to appear)

[9] Beavis B., Dobbs I. M., Static Optimization. Optimization and Stability Theory for Economic Analysis, Cambridge University Press, New York, 1990, 40 | MR

[10] Neudecker H., Magnus J. R., Matrix Differential Calculus with Applications in Statistics and Econometrics, John Wiley$\$ Sons, New York, 1988, 136 | MR

[11] Curtis F. E., Que X., “A Quasi-Newton Algorithm for Nonconvex, Nonsmooth Optimization with Global Convergence Guarantees”, Mathematical Programming Computation, 7:4 (2015), 399–428 | DOI | MR | Zbl