Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2020_13_a22, author = {Anna V. Tur and Natalya G. Magnitskaya}, title = {Feedback and open-loop {Nash} equilibria in a class of differential games with random duration}, journal = {Contributions to game theory and management}, pages = {415--426}, publisher = {mathdoc}, volume = {13}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2020_13_a22/} }
TY - JOUR AU - Anna V. Tur AU - Natalya G. Magnitskaya TI - Feedback and open-loop Nash equilibria in a class of differential games with random duration JO - Contributions to game theory and management PY - 2020 SP - 415 EP - 426 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CGTM_2020_13_a22/ LA - en ID - CGTM_2020_13_a22 ER -
%0 Journal Article %A Anna V. Tur %A Natalya G. Magnitskaya %T Feedback and open-loop Nash equilibria in a class of differential games with random duration %J Contributions to game theory and management %D 2020 %P 415-426 %V 13 %I mathdoc %U http://geodesic.mathdoc.fr/item/CGTM_2020_13_a22/ %G en %F CGTM_2020_13_a22
Anna V. Tur; Natalya G. Magnitskaya. Feedback and open-loop Nash equilibria in a class of differential games with random duration. Contributions to game theory and management, Tome 13 (2020), pp. 415-426. http://geodesic.mathdoc.fr/item/CGTM_2020_13_a22/
[1] Başar T., Olsder G., Dynamic Non-Cooperative Game Theory, Academic Press, London, 1995 | MR
[2] Dockner E. J., S. Jorgensen, N. van Long, G. Sorger, Differential Games in Economics and Management Science, Cambridge Univ. Press, 2000 | MR | Zbl
[3] Gromov D., Gromova E., “On a Class of Hybrid Differential Games”, Dyn. Games Appl., 7 (2017), 266–288 | DOI | MR | Zbl
[4] Gromova E. V., Magnitskaya N. G., “Solution of the differential game with hybrid structure”, Contributions to Game Theory and Management, 12 (2019), 159–176 | MR
[5] Gromova E., Tur A., “On the form of integral payoff in differential games with random duration”, 2017 XXVI International Conference on Information, Communication and Automation Technologies (ICAT) (Sarajevo, 2017), 2017, 1–6 | DOI
[6] Petrosyan L. A., Murzov N. V., “Game-theoretic Problems in Mechanics”, Lithuanian Mathematical Collection, 3 (1966), 423–433 | DOI | MR
[7] Petrosyan L. A., Shevkoplyas E. V., “Cooperative differential games with random duration”, Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, 2000, no. 4, 18–23 | MR | Zbl
[8] Pontryagin L. S., V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Wiley-Interscience, 1963 | MR
[9] Shevkoplyas E. V., “The Hamilton-Jacobi-Bellman equation for a class of differential games with random duration”, Autom. Remote Control, 75 (2014), 959–970 | DOI | MR