Game-theoretic modeling of market participants' behavior: case of Russian Adjustable-Rate Bonds with Puts
Contributions to game theory and management, Tome 13 (2020), pp. 347-359.

Voir la notice de l'article provenant de la source Math-Net.Ru

Adjustable-Rate Bonds with Puts (ARBP), frequently issued by the Russian companies, give the issuer the right to arbitrarily change the coupon payments on the bonds at certain moments. But at these moments, the investor has the right to force the issuer to redeem the bonds at a face value. These reciprocal actions of the issuer and investors can be considered as a dynamic game. We suggest a game-theoretic model that allow to determine the optimal decisions of the players. These decisions are compared with empirical data.
Keywords: dynamic game, optimal decisions, Russian bond market, Adjustable-Rate Bonds with Puts.
@article{CGTM_2020_13_a18,
     author = {Vitaly L. Okulov and Polina S. Zhilina},
     title = {Game-theoretic modeling of market participants' behavior: case of {Russian} {Adjustable-Rate} {Bonds} with {Puts}},
     journal = {Contributions to game theory and management},
     pages = {347--359},
     publisher = {mathdoc},
     volume = {13},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2020_13_a18/}
}
TY  - JOUR
AU  - Vitaly L. Okulov
AU  - Polina S. Zhilina
TI  - Game-theoretic modeling of market participants' behavior: case of Russian Adjustable-Rate Bonds with Puts
JO  - Contributions to game theory and management
PY  - 2020
SP  - 347
EP  - 359
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2020_13_a18/
LA  - en
ID  - CGTM_2020_13_a18
ER  - 
%0 Journal Article
%A Vitaly L. Okulov
%A Polina S. Zhilina
%T Game-theoretic modeling of market participants' behavior: case of Russian Adjustable-Rate Bonds with Puts
%J Contributions to game theory and management
%D 2020
%P 347-359
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2020_13_a18/
%G en
%F CGTM_2020_13_a18
Vitaly L. Okulov; Polina S. Zhilina. Game-theoretic modeling of market participants' behavior: case of Russian Adjustable-Rate Bonds with Puts. Contributions to game theory and management, Tome 13 (2020), pp. 347-359. http://geodesic.mathdoc.fr/item/CGTM_2020_13_a18/

[1] Amiram D., A. Kalay, A. Kalay, N. B. Ozel, “Information Asymmetry and the Bond Coupon Choice”, The Accounting Review, 93:2 (2018), 37–59 | DOI

[2] Brealey R. A., S. C. Myers, F. Allen, Does debt policy matter?, Principles of Corporate Finance, Chap. 13, concise edition, 2$^{\mathrm{nd}}$ ed., McGraw-Hill/Irwin, 2011, 324–345

[3] Bukhvalov A. V., E. A. Dorofeev, V. L. Okulov, “Pricing of floaters”, Lectures on selected issues of classical financial models, Chap. 6, 2$^{\mathrm{nd}}$ ed., ed. Bukhvalov A.V., GSOM Publ. Center, St.-Petersburg, 2015, 171–197 (in Russian)

[4] Campbell J. Y., A. W. Lo, A. C. MacKinlay, “Fixed-income securities”, The Econometric of Financial Markets, Chap. 10, Princeton Univ. Press, Princeton, 1997, 395–426 | DOI

[5] Fabozzi F. J., “Introduction to the valuation of debt securities”, Fixed Income Analysis, Chap. 5, 2$^{\mathrm{nd}}$ ed., John Wiley Sons, Hoboken, 2007, 97–118

[6] Fabozzi F. J., “Valuing bonds with embedded options”, Fixed Income Analysis, Chap. 9, 2$^{\mathrm{nd}}$ ed., John Wiley Sons, Hoboken, 2007, 215–255

[7] Heifetz A., Game Theory: Interactive Strategies in Economics and Management, Cambridge Univ. Press, New York, 2012

[8] Hooper V., J. Pointon, “A Valuation Model for the Variable Rate Demand Obligation”, Journal of Mathematical Finance, 9 (2019), 388–393 | DOI

[9] Ochiai N., M. Ohnishi, “Valuation of Game Option Bonds under the Generalized Ho-Lee model: A Stochastic Game Approach”, Journal of Mathematical Finance, 5 (2015), 412–422 | DOI

[10] Petrosyan L. A., N. A. Zenkevich, Game theory, 2$^{\mathrm{nd}}$ ed., World Scientific Publ., London–Singapore, 2016 | MR | Zbl

[11] Ramaswamy K., S. M. Sundaresan, “The valuation of floating rate instruments”, Journal of Financial Economics, 17:2 (1986), 251–272 | DOI