Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2020_13_a18, author = {Vitaly L. Okulov and Polina S. Zhilina}, title = {Game-theoretic modeling of market participants' behavior: case of {Russian} {Adjustable-Rate} {Bonds} with {Puts}}, journal = {Contributions to game theory and management}, pages = {347--359}, publisher = {mathdoc}, volume = {13}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2020_13_a18/} }
TY - JOUR AU - Vitaly L. Okulov AU - Polina S. Zhilina TI - Game-theoretic modeling of market participants' behavior: case of Russian Adjustable-Rate Bonds with Puts JO - Contributions to game theory and management PY - 2020 SP - 347 EP - 359 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CGTM_2020_13_a18/ LA - en ID - CGTM_2020_13_a18 ER -
%0 Journal Article %A Vitaly L. Okulov %A Polina S. Zhilina %T Game-theoretic modeling of market participants' behavior: case of Russian Adjustable-Rate Bonds with Puts %J Contributions to game theory and management %D 2020 %P 347-359 %V 13 %I mathdoc %U http://geodesic.mathdoc.fr/item/CGTM_2020_13_a18/ %G en %F CGTM_2020_13_a18
Vitaly L. Okulov; Polina S. Zhilina. Game-theoretic modeling of market participants' behavior: case of Russian Adjustable-Rate Bonds with Puts. Contributions to game theory and management, Tome 13 (2020), pp. 347-359. http://geodesic.mathdoc.fr/item/CGTM_2020_13_a18/
[1] Amiram D., A. Kalay, A. Kalay, N. B. Ozel, “Information Asymmetry and the Bond Coupon Choice”, The Accounting Review, 93:2 (2018), 37–59 | DOI
[2] Brealey R. A., S. C. Myers, F. Allen, Does debt policy matter?, Principles of Corporate Finance, Chap. 13, concise edition, 2$^{\mathrm{nd}}$ ed., McGraw-Hill/Irwin, 2011, 324–345
[3] Bukhvalov A. V., E. A. Dorofeev, V. L. Okulov, “Pricing of floaters”, Lectures on selected issues of classical financial models, Chap. 6, 2$^{\mathrm{nd}}$ ed., ed. Bukhvalov A.V., GSOM Publ. Center, St.-Petersburg, 2015, 171–197 (in Russian)
[4] Campbell J. Y., A. W. Lo, A. C. MacKinlay, “Fixed-income securities”, The Econometric of Financial Markets, Chap. 10, Princeton Univ. Press, Princeton, 1997, 395–426 | DOI
[5] Fabozzi F. J., “Introduction to the valuation of debt securities”, Fixed Income Analysis, Chap. 5, 2$^{\mathrm{nd}}$ ed., John Wiley Sons, Hoboken, 2007, 97–118
[6] Fabozzi F. J., “Valuing bonds with embedded options”, Fixed Income Analysis, Chap. 9, 2$^{\mathrm{nd}}$ ed., John Wiley Sons, Hoboken, 2007, 215–255
[7] Heifetz A., Game Theory: Interactive Strategies in Economics and Management, Cambridge Univ. Press, New York, 2012
[8] Hooper V., J. Pointon, “A Valuation Model for the Variable Rate Demand Obligation”, Journal of Mathematical Finance, 9 (2019), 388–393 | DOI
[9] Ochiai N., M. Ohnishi, “Valuation of Game Option Bonds under the Generalized Ho-Lee model: A Stochastic Game Approach”, Journal of Mathematical Finance, 5 (2015), 412–422 | DOI
[10] Petrosyan L. A., N. A. Zenkevich, Game theory, 2$^{\mathrm{nd}}$ ed., World Scientific Publ., London–Singapore, 2016 | MR | Zbl
[11] Ramaswamy K., S. M. Sundaresan, “The valuation of floating rate instruments”, Journal of Financial Economics, 17:2 (1986), 251–272 | DOI