Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2020_13_a15, author = {Dmitrii Lozovanu and Stefan Pickl}, title = {On the existence of stationary {Nash} equilibria in average stochastic games with finite state and action spaces}, journal = {Contributions to game theory and management}, pages = {304--323}, publisher = {mathdoc}, volume = {13}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2020_13_a15/} }
TY - JOUR AU - Dmitrii Lozovanu AU - Stefan Pickl TI - On the existence of stationary Nash equilibria in average stochastic games with finite state and action spaces JO - Contributions to game theory and management PY - 2020 SP - 304 EP - 323 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CGTM_2020_13_a15/ LA - en ID - CGTM_2020_13_a15 ER -
%0 Journal Article %A Dmitrii Lozovanu %A Stefan Pickl %T On the existence of stationary Nash equilibria in average stochastic games with finite state and action spaces %J Contributions to game theory and management %D 2020 %P 304-323 %V 13 %I mathdoc %U http://geodesic.mathdoc.fr/item/CGTM_2020_13_a15/ %G en %F CGTM_2020_13_a15
Dmitrii Lozovanu; Stefan Pickl. On the existence of stationary Nash equilibria in average stochastic games with finite state and action spaces. Contributions to game theory and management, Tome 13 (2020), pp. 304-323. http://geodesic.mathdoc.fr/item/CGTM_2020_13_a15/
[1] Boyd S., Vandenberghe L., Convex optimization, Cambridge university press, 2004 | MR | Zbl
[2] Dasgupta P., Maskin E., “The existence of equilibrium in discontinuous economic games, I: Theory”, The Review of economic studies, 53 (1986), 1–26 | DOI | MR | Zbl
[3] Debreu G., “A social equilibrium existence theorem”, Proceedings of the National Academy of Sciences, 38 (1952), 886–893 | DOI | MR | Zbl
[4] Ehrenfeucht A., Mycielski J., “Positional strategies for mean payoff games”, Int. J. of Game Theory, 8 (1979), 109–113 | DOI | MR | Zbl
[5] Filar J., Vrieze K., Competitive Markov Decision Processes, Springer, New York, NY, 1997 | MR | Zbl
[6] Filar J. A., Schultz T. A., Thuijsman F., Vrieze O., “Nonlinear programming and stationary equilibria in stochastic games”, Mathematical Programming, 50 (1991), 227–237 | DOI | MR | Zbl
[7] Fink A. M., “Equilibrium in a stochastic $n$-person game”, Journal of Science of the Hiroshima University, ser. math., 28 (1964), 89–93 | DOI | MR | Zbl
[8] Flesch J., Thuijsman F., Vrieze K., “Cyclic Markov equilibria in stochastic games”, International Journal of Game Theory, 26 (1997), 303–314 | DOI | MR | Zbl
[9] Gillette D., “Stochastic games with zero stop probabilities”, Contributions to the Theory of Games, 3 (1957), 179–187 | MR
[10] Glicksberg I. L., “A further generalization of the Kakutani fixed point theorem wih application to Nash equilibrium points”, Proceedings of the American Mathematical Society, 38 (1952), 170–174 | MR
[11] Kallenberg L., Markov decision processes, University of Leiden, Netherland, 2016
[12] Lozovanu D., “The game-theoretical approach to Markov decision problems and determining Nash equilibria for stochastic positional games”, International Journal of Mathematical Modelling and Numerical Optimisation, 2 (2011), 162–174 | DOI | Zbl
[13] Lozovanu D., “Stationary Nash equilibria for average stochastic positional games”, Frontiers of Dynamic Games, Static and Dynamic Game Theory: Fondation and Application, Chapter 9, eds. L. Petrosyan et al., Springer, 2018, 139–163 | DOI | MR
[14] Lozovanu D., “Pure and Mixed Stationary Nash equilibria for average stochastic positional games”, Frontiers of Dynamic Games, Static and Dynamic Game Theory: Fondation and Application, Chapter 8, eds. L. Petrosyan et al., Springer, 2019, 131–174 | DOI | MR
[15] Lozovanu D., Pickl S., Optimization of stochastic discrete systems and control on complex networks, Springer, 2015 | MR | Zbl
[16] Mertens J.-F., Neyman A., “Stochastic games”, International Journal of Game Theory, 10 (1981), 53–66 | DOI | MR | Zbl
[17] Neyman A., Sorin S., Stochastic games and applications, NATO science series, C, Mathematical and physical sciences, 569, Kluwer Academic Publishers, 2003 | MR
[18] Puterman M. L., Markov decision processes: Discrete stochastic dynamic programming, Wiley, New Jersey, 2005 | MR | Zbl
[19] Reny P. J., “On the existence of pure and mixed strategy Nash equilibria in discontinuous games”, Econometrica, 67 (1999), 1029–1056 | DOI | MR | Zbl
[20] Rogers P. D., Nonzero-sum stochastic games, Technical Report, DTIC Document, 1969 | MR
[21] Schultz T. A., Mathematical programming and stochastic games, Ph. D. Thesis, The John Hopkins University, Baltimore, Maryland, 1986
[22] Shapley L. S., “Stochastic games”, Proceedings of the National Academy of Sciences, 39 (1953), 1095–1100 | DOI | MR | Zbl
[23] Simon L. K., “Games with discontinuous payoffs”, The Review of Economic Studies, 54 (1987), 569–597 | DOI | MR | Zbl
[24] Sobel M. J., “Noncooperative stochastic games”, The Annals of Mathematical Statistics, 42 (1971), 1930–1935 | DOI | MR | Zbl
[25] Solan E., “Stochastic games”, Encyclopedia of Complexity and Systems Science, Springer, 2009, 8698–8708 | DOI
[26] Solan E., Vieille N., “Computing uniformly optimal strategies in two-player stochastic games”, Economic Theory, 42 (2010), 237–253 | DOI | MR | Zbl
[27] Takahashi M., “Equilibrium points of stochastic non-cooperative $ n $-person games”, Journal of Science of the Hiroshima University, Series AI, Math., 28 (1964), 95–99 | DOI | MR | Zbl
[28] Tijs S., Vrieze O., “On the existence of easy initial states for undiscounted stochastic games”, Mathematics of Operations Research, 11 (1986), 506–513 | DOI | MR | Zbl
[29] Vieille N., “Stochastic games: Recent results”, Handbook of Game Theory with Economic Applications, v. 3, 2002, 1833–1850 | DOI
[30] Vieille N., “Equilibrium in 2-person stochastic games I, II”, Israel Journal of Mathematics, 2009, 8698–8708
[31] Vrieze O. J., “Stochastic games with finite state and action spaces”, CWI Tracts, 33, 1987, 1–221 | MR