A note on four-players triple game
Contributions to game theory and management, Tome 12 (2019), pp. 100-112

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce so-called four-players triple game and define Nash equilibrium. The problem of numerical finding of a Nash equilibrium in a four-players triple game has been examined. Such a game can be completely described by twelve matrices, and it turns out to be equivalent to the solving a nonconvex optimization problem. Special methods of local and global search for the optimization problem are proposed. The proposed algorithm was implemented on test problems by "GAMUT" (http://gamut.stanford.edu).
Keywords: nonconvex optimization, four-players triple game, local and global search algorithm, Nash equilibrium.
@article{CGTM_2019_12_a4,
     author = {Rentsen Enkhbat and Sukhee Batbileg and Anton Anikin and Natsagdorj Tungalag and Alexander Gornov},
     title = {A note on four-players triple game},
     journal = {Contributions to game theory and management},
     pages = {100--112},
     publisher = {mathdoc},
     volume = {12},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2019_12_a4/}
}
TY  - JOUR
AU  - Rentsen Enkhbat
AU  - Sukhee Batbileg
AU  - Anton Anikin
AU  - Natsagdorj Tungalag
AU  - Alexander Gornov
TI  - A note on four-players triple game
JO  - Contributions to game theory and management
PY  - 2019
SP  - 100
EP  - 112
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2019_12_a4/
LA  - en
ID  - CGTM_2019_12_a4
ER  - 
%0 Journal Article
%A Rentsen Enkhbat
%A Sukhee Batbileg
%A Anton Anikin
%A Natsagdorj Tungalag
%A Alexander Gornov
%T A note on four-players triple game
%J Contributions to game theory and management
%D 2019
%P 100-112
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2019_12_a4/
%G en
%F CGTM_2019_12_a4
Rentsen Enkhbat; Sukhee Batbileg; Anton Anikin; Natsagdorj Tungalag; Alexander Gornov. A note on four-players triple game. Contributions to game theory and management, Tome 12 (2019), pp. 100-112. http://geodesic.mathdoc.fr/item/CGTM_2019_12_a4/