Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2019_12_a15, author = {Dmitry B. Rokhlin and Gennady A. Ougolnitsky}, title = {Optimal incentive strategy in a discounted stochastic {Stackelberg} game}, journal = {Contributions to game theory and management}, pages = {273--281}, publisher = {mathdoc}, volume = {12}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2019_12_a15/} }
TY - JOUR AU - Dmitry B. Rokhlin AU - Gennady A. Ougolnitsky TI - Optimal incentive strategy in a discounted stochastic Stackelberg game JO - Contributions to game theory and management PY - 2019 SP - 273 EP - 281 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CGTM_2019_12_a15/ LA - en ID - CGTM_2019_12_a15 ER -
%0 Journal Article %A Dmitry B. Rokhlin %A Gennady A. Ougolnitsky %T Optimal incentive strategy in a discounted stochastic Stackelberg game %J Contributions to game theory and management %D 2019 %P 273-281 %V 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/CGTM_2019_12_a15/ %G en %F CGTM_2019_12_a15
Dmitry B. Rokhlin; Gennady A. Ougolnitsky. Optimal incentive strategy in a discounted stochastic Stackelberg game. Contributions to game theory and management, Tome 12 (2019), pp. 273-281. http://geodesic.mathdoc.fr/item/CGTM_2019_12_a15/
[1] Aliprantis C. D., Border K. C., Infinite dimensional analysis: a hitchhiker's guide, Springer-Verlag, Berlin, 2006 | MR | Zbl
[2] Bogachev V., Measure theory, v. II, Springer-Verlag, Berlin, 2007 | MR | Zbl
[3] Breton M., Alj A., Haurie A., “Sequential Stackelberg equilibria in two-person games”, J. Optim. Theory Appl., 59:1 (1988), 71–97 | DOI | MR | Zbl
[4] Dynkin E. B., Yushkevich A. A., Markov control processes and their applications, Springer-Verlag, New York, 1979 | MR
[5] He W., Theory of correspondences and games, Ph.D. Thesis, National University of Singapore, 2014
[6] He W., Sun Y., “Stationary Markov perfect equilibria in discounted stochastic games”, J. Econ. Theory, 169 (2017), 35–61 | DOI | MR | Zbl
[7] He, W., Sun, Y., “Conditional expectation of correspondences and economic applications”, Econ. Theory, 66:2 (2018), 265–299 | DOI | MR | Zbl
[8] Himmelberg C. J., Parthasarathy T., VanVleck F. S., “Optimal plans for dynamic programming problems”, Math. Oper. Res., 1:4 (1976), 390–394 | DOI | MR | Zbl
[9] Hu S., Papageorgiou N. S., Handbook of multivalued analysis, v. 1, Theory, Kluwer, Dordrecht, 1997 | MR | Zbl
[10] Hu S., Papageorgiou N. S., Handbook of multivalued analysis, v. 2, Applications, Kluwer, Dordrecht, 2000 | MR | Zbl
[11] Jaśkiewicz A., Nowak A. S., Non-zero-sum stochastic games, Handbook of Dynamic Game Theory, eds. Basar T., Zaccour G., Springer, Cham, 2018
[12] Laffont J.-J., Martimort D., The theory of incentives: the principal-agent model, Princeton University Press, Princeton, NJ, 2002
[13] Myerson R. B., “Mechanism design by an informed principal”, Econometrica, 51:6 (1983), 1767–1797 | DOI | MR | Zbl
[14] Novikov D. A., Theory of control in organizations, Nova Science Publishers, New York, 2013 | MR
[15] Novikov D. A., Shokhina T. E., “Incentive mechanisms in dynamic active systems”, Autom. Remote Control, 64 (2003), 1912–1921 | DOI | MR | Zbl
[16] Olsder G. J., “Phenomena in inverse Stackelberg games, part 2: Dynamic problems”, J. Optim. Theory Appl., 143:3 (2009), 601–618 | DOI | MR | Zbl
[17] Rokhlin D. B., Ougolnitsky G. A., “Stackelberg equilibrium in a dynamic stimulation model with complete information”, Autom. Remote Control, 79 (2018), 701–712 | DOI | MR | Zbl
[18] Srivastava S. M., A course on Borel sets, Springer, New York, 1998 | MR | Zbl