Optimal incentive strategy in a discounted stochastic Stackelberg game
Contributions to game theory and management, Tome 12 (2019), pp. 273-281

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a game where manager's (leader's) aim is to maximize the gain of a large corporation by the distribution of funds between $m$ producers (followers). The manager selects a tuple of $m$ non-negative incentive functions, and the producers play a discounted stochastic game, which results in a Nash equilibrium. Manager's aim is to maximize her related payoff over the class of admissible incentive functions. It is shown that this problem is reduced to a Markov decision process.
@article{CGTM_2019_12_a15,
     author = {Dmitry B. Rokhlin and Gennady A. Ougolnitsky},
     title = {Optimal incentive strategy in a discounted stochastic {Stackelberg} game},
     journal = {Contributions to game theory and management},
     pages = {273--281},
     publisher = {mathdoc},
     volume = {12},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2019_12_a15/}
}
TY  - JOUR
AU  - Dmitry B. Rokhlin
AU  - Gennady A. Ougolnitsky
TI  - Optimal incentive strategy in a discounted stochastic Stackelberg game
JO  - Contributions to game theory and management
PY  - 2019
SP  - 273
EP  - 281
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2019_12_a15/
LA  - en
ID  - CGTM_2019_12_a15
ER  - 
%0 Journal Article
%A Dmitry B. Rokhlin
%A Gennady A. Ougolnitsky
%T Optimal incentive strategy in a discounted stochastic Stackelberg game
%J Contributions to game theory and management
%D 2019
%P 273-281
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2019_12_a15/
%G en
%F CGTM_2019_12_a15
Dmitry B. Rokhlin; Gennady A. Ougolnitsky. Optimal incentive strategy in a discounted stochastic Stackelberg game. Contributions to game theory and management, Tome 12 (2019), pp. 273-281. http://geodesic.mathdoc.fr/item/CGTM_2019_12_a15/