Optimal incentive strategy in a discounted stochastic Stackelberg game
Contributions to game theory and management, Tome 12 (2019), pp. 273-281.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a game where manager's (leader's) aim is to maximize the gain of a large corporation by the distribution of funds between $m$ producers (followers). The manager selects a tuple of $m$ non-negative incentive functions, and the producers play a discounted stochastic game, which results in a Nash equilibrium. Manager's aim is to maximize her related payoff over the class of admissible incentive functions. It is shown that this problem is reduced to a Markov decision process.
@article{CGTM_2019_12_a15,
     author = {Dmitry B. Rokhlin and Gennady A. Ougolnitsky},
     title = {Optimal incentive strategy in a discounted stochastic {Stackelberg} game},
     journal = {Contributions to game theory and management},
     pages = {273--281},
     publisher = {mathdoc},
     volume = {12},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2019_12_a15/}
}
TY  - JOUR
AU  - Dmitry B. Rokhlin
AU  - Gennady A. Ougolnitsky
TI  - Optimal incentive strategy in a discounted stochastic Stackelberg game
JO  - Contributions to game theory and management
PY  - 2019
SP  - 273
EP  - 281
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2019_12_a15/
LA  - en
ID  - CGTM_2019_12_a15
ER  - 
%0 Journal Article
%A Dmitry B. Rokhlin
%A Gennady A. Ougolnitsky
%T Optimal incentive strategy in a discounted stochastic Stackelberg game
%J Contributions to game theory and management
%D 2019
%P 273-281
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2019_12_a15/
%G en
%F CGTM_2019_12_a15
Dmitry B. Rokhlin; Gennady A. Ougolnitsky. Optimal incentive strategy in a discounted stochastic Stackelberg game. Contributions to game theory and management, Tome 12 (2019), pp. 273-281. http://geodesic.mathdoc.fr/item/CGTM_2019_12_a15/

[1] Aliprantis C. D., Border K. C., Infinite dimensional analysis: a hitchhiker's guide, Springer-Verlag, Berlin, 2006 | MR | Zbl

[2] Bogachev V., Measure theory, v. II, Springer-Verlag, Berlin, 2007 | MR | Zbl

[3] Breton M., Alj A., Haurie A., “Sequential Stackelberg equilibria in two-person games”, J. Optim. Theory Appl., 59:1 (1988), 71–97 | DOI | MR | Zbl

[4] Dynkin E. B., Yushkevich A. A., Markov control processes and their applications, Springer-Verlag, New York, 1979 | MR

[5] He W., Theory of correspondences and games, Ph.D. Thesis, National University of Singapore, 2014

[6] He W., Sun Y., “Stationary Markov perfect equilibria in discounted stochastic games”, J. Econ. Theory, 169 (2017), 35–61 | DOI | MR | Zbl

[7] He, W., Sun, Y., “Conditional expectation of correspondences and economic applications”, Econ. Theory, 66:2 (2018), 265–299 | DOI | MR | Zbl

[8] Himmelberg C. J., Parthasarathy T., VanVleck F. S., “Optimal plans for dynamic programming problems”, Math. Oper. Res., 1:4 (1976), 390–394 | DOI | MR | Zbl

[9] Hu S., Papageorgiou N. S., Handbook of multivalued analysis, v. 1, Theory, Kluwer, Dordrecht, 1997 | MR | Zbl

[10] Hu S., Papageorgiou N. S., Handbook of multivalued analysis, v. 2, Applications, Kluwer, Dordrecht, 2000 | MR | Zbl

[11] Jaśkiewicz A., Nowak A. S., Non-zero-sum stochastic games, Handbook of Dynamic Game Theory, eds. Basar T., Zaccour G., Springer, Cham, 2018

[12] Laffont J.-J., Martimort D., The theory of incentives: the principal-agent model, Princeton University Press, Princeton, NJ, 2002

[13] Myerson R. B., “Mechanism design by an informed principal”, Econometrica, 51:6 (1983), 1767–1797 | DOI | MR | Zbl

[14] Novikov D. A., Theory of control in organizations, Nova Science Publishers, New York, 2013 | MR

[15] Novikov D. A., Shokhina T. E., “Incentive mechanisms in dynamic active systems”, Autom. Remote Control, 64 (2003), 1912–1921 | DOI | MR | Zbl

[16] Olsder G. J., “Phenomena in inverse Stackelberg games, part 2: Dynamic problems”, J. Optim. Theory Appl., 143:3 (2009), 601–618 | DOI | MR | Zbl

[17] Rokhlin D. B., Ougolnitsky G. A., “Stackelberg equilibrium in a dynamic stimulation model with complete information”, Autom. Remote Control, 79 (2018), 701–712 | DOI | MR | Zbl

[18] Srivastava S. M., A course on Borel sets, Springer, New York, 1998 | MR | Zbl