Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2019_12_a13, author = {Dmitrii Lozovanu and Stefan Pickl}, title = {Pure stationary nash equilibria for discounted stochastic positional games}, journal = {Contributions to game theory and management}, pages = {246--260}, publisher = {mathdoc}, volume = {12}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2019_12_a13/} }
TY - JOUR AU - Dmitrii Lozovanu AU - Stefan Pickl TI - Pure stationary nash equilibria for discounted stochastic positional games JO - Contributions to game theory and management PY - 2019 SP - 246 EP - 260 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CGTM_2019_12_a13/ LA - en ID - CGTM_2019_12_a13 ER -
Dmitrii Lozovanu; Stefan Pickl. Pure stationary nash equilibria for discounted stochastic positional games. Contributions to game theory and management, Tome 12 (2019), pp. 246-260. http://geodesic.mathdoc.fr/item/CGTM_2019_12_a13/
[1] Boyd S., Vandenberghe L., Convex optimization, Cambridge University Press, 2004 | MR | Zbl
[2] Dasgupta P., Maskin E., “The existence of equilibrium in discontinuous economic games”, Rev. Econ. Stud., 53 (1986), 1–26 | DOI | MR | Zbl
[3] Debreu G., “A social equilibrium existence theorem”, Proceedings of the National Academy of Sciences, 38 (1952), 886–893 | DOI | MR | Zbl
[4] Fink A., “Equilibria in a stochastic $n$-person game”, Journal of Science of Hiroshima University, Series A-I, 28 (1964), 89–93 | MR | Zbl
[5] Gurvich V., Karzanov A., Khachiyan L., “Cyclic games and an algorithm to find minimax cycle means in directed graphs”, USSR Comput. Math. Math. Phis., 28 (1988), 85–91 | DOI | MR | Zbl
[6] Lozovanu D., Pickl S., Optimization of Stochastic Discrete Systems and Control on Complex Networks, Springer, 2015 | MR | Zbl
[7] Puterman M., Markov Decision Processes: Discrete Dynamic Programming, Wiley, Hoboken, 2005 | MR | Zbl
[8] Shapley L., “Stochastic games”, Proc. Natl. Acad. Sci. USA, 39 (1953), 1095–1100 | DOI | MR | Zbl
[9] Sobol M., “Non-cooperative stochastic games”, Ann. Math. Statist., 42 (1971), 1930–1935 | DOI | MR
[10] Solan E., “Discounted stochastic games”, Mathematics of Operation Research, 23:4 (1998), 1010–1021 | DOI | MR | Zbl
[11] Takahashi M., “Equilibrium points of stochastic, noncooperative $n$-person games”, J. Sci. Hiroshima Univ., Series A-I, 28 (1964), 95–99 | MR | Zbl