Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2017_10_a7, author = {Ekaterina V. Gromova and Anastasiya P. Malakhova and Anna V. Tur}, title = {On the conditions on the integral payoff function in the games with random duration}, journal = {Contributions to game theory and management}, pages = {94--99}, publisher = {mathdoc}, volume = {10}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2017_10_a7/} }
TY - JOUR AU - Ekaterina V. Gromova AU - Anastasiya P. Malakhova AU - Anna V. Tur TI - On the conditions on the integral payoff function in the games with random duration JO - Contributions to game theory and management PY - 2017 SP - 94 EP - 99 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CGTM_2017_10_a7/ LA - en ID - CGTM_2017_10_a7 ER -
%0 Journal Article %A Ekaterina V. Gromova %A Anastasiya P. Malakhova %A Anna V. Tur %T On the conditions on the integral payoff function in the games with random duration %J Contributions to game theory and management %D 2017 %P 94-99 %V 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/CGTM_2017_10_a7/ %G en %F CGTM_2017_10_a7
Ekaterina V. Gromova; Anastasiya P. Malakhova; Anna V. Tur. On the conditions on the integral payoff function in the games with random duration. Contributions to game theory and management, Tome 10 (2017), pp. 94-99. http://geodesic.mathdoc.fr/item/CGTM_2017_10_a7/
[1] Aseev S. M., Kryazhimskiy A. V., “The maximum Pontryagin principle and problems of optimal economic growth”, Tr. MIAN, 257, Nauka, M., 2007, 3–271 (in Russian) | MR
[2] Boukas E. K., Haurie A., Michel P., “An Optimal Control Problem with a Random Stopping Time”, Journal of optimization theory and applications, 64:3 (1990), 471–480 | DOI | MR | Zbl
[3] Breton M., Zaccour G., Zahaf M., “A differential game of joint implementation of environmental projects”, Automatica, 41:10 (2005), 1737–1749 | DOI | MR | Zbl
[4] Dockner E., Jorgensen S., Long N. V., Sorger G., Differential Games in Economics and Management Science, Cambridge University Press, Cambridge, 2000 | MR | Zbl
[5] Gromova E. V., Lopez-Barrientos Jose Daniel, “A differential game model for the extraction of non renewable resources with random initial times”, Contributions to Game Theory and Management, 8 (2015), 58–-63 | MR
[6] Kostyunin S., Shevkoplyas E., “On simplification of integral payoff in differential games with random duration”, Vestnik S. Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 4 (2011), 47-–56
[7] Marin-Solano J., Shevkoplyas E. V., “Non-constant discounting and differential games with random time horizon”, Automatica, 47:12 (2011), 2626–2638 | DOI | MR | Zbl
[8] Petrosjan L. A., Murzov N. V., “Game-theoretic problems of mechanics”, Litovsk. Mat. Sb., 6 (1966), 423–433 (in Russian) | MR | Zbl
[9] Petrosjan L. A., Shevkoplyas E. V., “Cooperative Solutions for Games with Random Duration”, Game Theory and Applications, v. IX, Nova Science Publishers, 2003, 125–139 | MR | Zbl
[10] Shevkoplyas E. V., “Optimal Solutions in Differential Games with Random Duration”, Journal of Mathematical Sciences, 189:6 (2014), 715–722 | DOI | MR