On the conditions on the integral payoff function in the games with random duration
Contributions to game theory and management, Tome 10 (2017), pp. 94-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the problem of the existence of the integral payoff in the differential games with random duration when the random time is defined on the infinite time interval. We present an example of a game with random duration, a game-theoretic model of the development of non-renewable resources.
Keywords: differential games, random duration, environment, pollution control.
@article{CGTM_2017_10_a7,
     author = {Ekaterina V. Gromova and Anastasiya P. Malakhova and Anna V. Tur},
     title = {On the conditions on the integral payoff function in the games with random duration},
     journal = {Contributions to game theory and management},
     pages = {94--99},
     publisher = {mathdoc},
     volume = {10},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2017_10_a7/}
}
TY  - JOUR
AU  - Ekaterina V. Gromova
AU  - Anastasiya P. Malakhova
AU  - Anna V. Tur
TI  - On the conditions on the integral payoff function in the games with random duration
JO  - Contributions to game theory and management
PY  - 2017
SP  - 94
EP  - 99
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2017_10_a7/
LA  - en
ID  - CGTM_2017_10_a7
ER  - 
%0 Journal Article
%A Ekaterina V. Gromova
%A Anastasiya P. Malakhova
%A Anna V. Tur
%T On the conditions on the integral payoff function in the games with random duration
%J Contributions to game theory and management
%D 2017
%P 94-99
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2017_10_a7/
%G en
%F CGTM_2017_10_a7
Ekaterina V. Gromova; Anastasiya P. Malakhova; Anna V. Tur. On the conditions on the integral payoff function in the games with random duration. Contributions to game theory and management, Tome 10 (2017), pp. 94-99. http://geodesic.mathdoc.fr/item/CGTM_2017_10_a7/

[1] Aseev S. M., Kryazhimskiy A. V., “The maximum Pontryagin principle and problems of optimal economic growth”, Tr. MIAN, 257, Nauka, M., 2007, 3–271 (in Russian) | MR

[2] Boukas E. K., Haurie A., Michel P., “An Optimal Control Problem with a Random Stopping Time”, Journal of optimization theory and applications, 64:3 (1990), 471–480 | DOI | MR | Zbl

[3] Breton M., Zaccour G., Zahaf M., “A differential game of joint implementation of environmental projects”, Automatica, 41:10 (2005), 1737–1749 | DOI | MR | Zbl

[4] Dockner E., Jorgensen S., Long N. V., Sorger G., Differential Games in Economics and Management Science, Cambridge University Press, Cambridge, 2000 | MR | Zbl

[5] Gromova E. V., Lopez-Barrientos Jose Daniel, “A differential game model for the extraction of non renewable resources with random initial times”, Contributions to Game Theory and Management, 8 (2015), 58–-63 | MR

[6] Kostyunin S., Shevkoplyas E., “On simplification of integral payoff in differential games with random duration”, Vestnik S. Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 4 (2011), 47-–56

[7] Marin-Solano J., Shevkoplyas E. V., “Non-constant discounting and differential games with random time horizon”, Automatica, 47:12 (2011), 2626–2638 | DOI | MR | Zbl

[8] Petrosjan L. A., Murzov N. V., “Game-theoretic problems of mechanics”, Litovsk. Mat. Sb., 6 (1966), 423–433 (in Russian) | MR | Zbl

[9] Petrosjan L. A., Shevkoplyas E. V., “Cooperative Solutions for Games with Random Duration”, Game Theory and Applications, v. IX, Nova Science Publishers, 2003, 125–139 | MR | Zbl

[10] Shevkoplyas E. V., “Optimal Solutions in Differential Games with Random Duration”, Journal of Mathematical Sciences, 189:6 (2014), 715–722 | DOI | MR