Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2017_10_a5, author = {Misha Gavrilovich and Victoria Kreps}, title = {Games with incomplete information on the both sides and with public signal on the state of the game}, journal = {Contributions to game theory and management}, pages = {68--78}, publisher = {mathdoc}, volume = {10}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2017_10_a5/} }
TY - JOUR AU - Misha Gavrilovich AU - Victoria Kreps TI - Games with incomplete information on the both sides and with public signal on the state of the game JO - Contributions to game theory and management PY - 2017 SP - 68 EP - 78 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CGTM_2017_10_a5/ LA - en ID - CGTM_2017_10_a5 ER -
%0 Journal Article %A Misha Gavrilovich %A Victoria Kreps %T Games with incomplete information on the both sides and with public signal on the state of the game %J Contributions to game theory and management %D 2017 %P 68-78 %V 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/CGTM_2017_10_a5/ %G en %F CGTM_2017_10_a5
Misha Gavrilovich; Victoria Kreps. Games with incomplete information on the both sides and with public signal on the state of the game. Contributions to game theory and management, Tome 10 (2017), pp. 68-78. http://geodesic.mathdoc.fr/item/CGTM_2017_10_a5/
[1] Neyman A., “Cooperation, repetition and automata”, Cooperation: Game-Theoretic Approaches, NATO ASI Series F, 155, eds. Hart S., Mas-Colell A., Springer-Verlag, 1997, 233–255 | MR | Zbl
[2] Neyman A., “Finitely repeated games with finite automata”, Math. Oper. Res., 23 (1998), 513–552 | DOI | MR | Zbl
[3] Rubinstein A., “Finite automata play the repeated prisoner’s dilemma”, J. Econ. Theory, 39 (1986), 83–96 | DOI | MR | Zbl
[4] Abreu D., Rubinstein A., “The structure of Nash equilibrium in repeated games with finite automata”, Econometrica, 56 (1988), 1259–1281 | DOI | MR | Zbl
[5] Hernández P., Solan E., “Bounded computational capacity equilibrium”, Journal of Economic Theory, 163 (2016), 342–364 | DOI | MR | Zbl
[6] Harsanyi J., “Games with Incomplete Information Played by Bayesian Players. Parts I–III”, Management Science, 14 (1967–1968), 159–182 ; 320–334; 486–502 | DOI | MR | Zbl
[7] Aumann R., Maschler M., Repeated Games with Incomplete Information, The MIT Press, Cambridge–Massachusetts–London, England, 1995 | MR
[8] Gensbittel F., “Continuous-time limits of dynamic games with incomplete information and a more informed player”, Int. J. of Game Theory, 2016 (to appear) | MR
[9] Gensbittel F., Oliu-Barton M., Venel H., “Existence of the uniform value in repeated games with a more informed controller”, J. of Dynamics and Games, 1:3 (2014), 411–445 | DOI | MR | Zbl
[10] Sakarovitch J., Elements of Automata Theory, Cambridge University Press, 2009 | MR | Zbl
[11] Kobrinskii N., Trakhtenbrot B., Introduction to the Theory of Finite Automata, North-Holland, Amsterdam, 1965 | MR
[12] Hagerup T., “A guided tour of Chernoff bounds”, Information Processing Letters, 33:6 (1990), 305 | DOI | MR | Zbl
[13] Borda M., Fundamentals in Information Theory and Coding, Springer, 2011 | MR | Zbl
[14] Mertens J.-F., “Repeated games”, Proceedings of the International Congress of Mathematicians (Berkeley, California, USA, 1986), 1528–1577 | MR | Zbl
[15] Mertens J.-F., Sorin S., Zamir S., Repeated games, Econometric Society Monographs, Cambridge Univ. Press, 2015 | MR | Zbl
[16] Shapley L., “Stochastic Games”, Proc. Nat. Acad. Sci. U.S.A., 39 (1953), 1095–1100 | DOI | MR | Zbl