Types of equilibrium points in antagonistic games with ordered outcomes
Contributions to game theory and management, Tome 10 (2017), pp. 287-298.

Voir la notice de l'article provenant de la source Math-Net.Ru

Saddle point concept is a basic one for antagonistic games with payoff functions. For more large class consisting of games with ordered outcomes, there are different generalizations of the saddle point concept. In this article we consider three types of equilibrium for games with ordered outcomes, namely, saddle points (or Nash equilibrium points), general equilibrium points and transitive equilibrium points. The main definitions concerning games with ordered outcomes are introduced in section 1. In section 2, necessary and sufficient conditions for saddle points in games with ordered outcomes are found. These conditions are formulated by using the so-called characteristic sets of players. Transitive equilibrium points are considered in section 3. Theorem 3 characterizes transitive equilibrium points in antagonistic games with ordered outcomes as pre-images of saddle points in antagonistic games with payoff functions under strict homomorphisms. The main result of this article is theorem 4 in which analogy result for mixed extension of game with ordered outcomes is proved. In constructing of mixed extension of game with ordered outcomes, we use the so-called canonical extension of an order on the set of probabilistic measures.
Keywords: game with ordered outcomes, saddle point, general equilibrium point, transitive equilibrium point.
@article{CGTM_2017_10_a17,
     author = {Victor V. Rozen},
     title = {Types of equilibrium points in antagonistic games with ordered outcomes},
     journal = {Contributions to game theory and management},
     pages = {287--298},
     publisher = {mathdoc},
     volume = {10},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2017_10_a17/}
}
TY  - JOUR
AU  - Victor V. Rozen
TI  - Types of equilibrium points in antagonistic games with ordered outcomes
JO  - Contributions to game theory and management
PY  - 2017
SP  - 287
EP  - 298
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2017_10_a17/
LA  - en
ID  - CGTM_2017_10_a17
ER  - 
%0 Journal Article
%A Victor V. Rozen
%T Types of equilibrium points in antagonistic games with ordered outcomes
%J Contributions to game theory and management
%D 2017
%P 287-298
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2017_10_a17/
%G en
%F CGTM_2017_10_a17
Victor V. Rozen. Types of equilibrium points in antagonistic games with ordered outcomes. Contributions to game theory and management, Tome 10 (2017), pp. 287-298. http://geodesic.mathdoc.fr/item/CGTM_2017_10_a17/

[1] Vorob'ev N. N., Game theory for economists-cyberneticists, Nauka, M., 1985 (in Russian)

[2] Leichtweiss K., Convex Sets, VEB Deutscher Verlag der Wissenshaften, Berlin, 1980 | MR

[3] Rozen V. V., “Reducibility of optimal solutions for games with ordered outcomes”, Semigroup Theory and Its Applications, Saratov State University, Saratov, 1988, 50–60 (in Russian) | MR

[4] Rozen V. V., “Equilibrium points in games with ordered outcomes”, Contributions to game theory and management, Collected papers presented on the Third International Conference Game Theory and Management, v. III, eds. Petrosyan L. A., Zenkevich N. A., Graduate School of Management SPbU, SPb, 2010, 368–386 | MR | Zbl

[5] Rozen V. V., Ordered vector spaces and its applications, Saratov State University, Saratov, 2014 (in Russian)