Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2017_10_a12, author = {Dmitrii Lozovanu and Stefan Pickl}, title = {Stationary {Nash} equilibria for two-player average stochastic games with finite state and action spaces}, journal = {Contributions to game theory and management}, pages = {175--184}, publisher = {mathdoc}, volume = {10}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2017_10_a12/} }
TY - JOUR AU - Dmitrii Lozovanu AU - Stefan Pickl TI - Stationary Nash equilibria for two-player average stochastic games with finite state and action spaces JO - Contributions to game theory and management PY - 2017 SP - 175 EP - 184 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CGTM_2017_10_a12/ LA - en ID - CGTM_2017_10_a12 ER -
%0 Journal Article %A Dmitrii Lozovanu %A Stefan Pickl %T Stationary Nash equilibria for two-player average stochastic games with finite state and action spaces %J Contributions to game theory and management %D 2017 %P 175-184 %V 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/CGTM_2017_10_a12/ %G en %F CGTM_2017_10_a12
Dmitrii Lozovanu; Stefan Pickl. Stationary Nash equilibria for two-player average stochastic games with finite state and action spaces. Contributions to game theory and management, Tome 10 (2017), pp. 175-184. http://geodesic.mathdoc.fr/item/CGTM_2017_10_a12/
[1] Dasgupta P., Maskin E., “The existence of equilibrium in discontinuous economic games”, Review of Economic Studies, 53 (1986), 1–26 | DOI | MR | Zbl
[2] Fan K., “Application of a theorem concerned sets with convex sections”, Math. Ann., 163 (1966), 189–203 | DOI | MR | Zbl
[3] Flesch J., Thuijsman F., Vrieze K., “Cyclic Markov equilibria in stochastic games”, International Journal of Game Theory, 26 (1997), 303–314 | DOI | MR | Zbl
[4] Lozovanu D., “Stationary Nash equilibria for average stochastic games”, Buletinul A. S. R. M, ser. Math., 2016, no. 2(81), 71–92 | Zbl
[5] Mertens J. F., Neyman A., “Stochastic games”, International Journal of Game Theory, 10 (1981), 53–66 | DOI | MR | Zbl
[6] Nash J., “Non-cooperative games”, Ann. Math., 54 (1951), 286–293 | DOI | MR
[7] Puterman M., Markov Decision Processes: Discrete Stochastic Dynamic Programming, John Wiley, New Jersey, 2005 | MR | Zbl
[8] Shapley L., “Stochastic games”, Proc. Natl. Acad. Sci., U.S.A., 39 (1953), 1095–1100 | DOI | MR | Zbl
[9] Solan E., Vieille N., “Computing uniform optimal strategies in two-player stochastic games”, Economic Theory, 42, special issue on equilibrium computation (2010), 237–253 | DOI | MR | Zbl
[10] Tijs S., Vrieze O., “On the existence of easy initial states for undiscounted stochastic games”, Math. Oper. Res., 11 (1986), 506–513 | DOI | MR | Zbl
[11] Vieille N., “Equilibrium in 2-person stochastic games. I, II”, Israel J. Math., 119:1 (2000), 55–126 | DOI | MR