Minimax estimation of value-at-risk under hedging of an American contingent claim in a discrete financial market
Contributions to game theory and management, Tome 9 (2016), pp. 276-286.

Voir la notice de l'article provenant de la source Math-Net.Ru

The game problems between seller and buyer of an American contingent claim relate to large scale problems because a number of buyer's strategies grows overexponentially. Therefore, decomposition of such games turns out to be a fundamental problem. In this paper we prove the existence of a minimax monotonous (in time) strategy of the seller in a loss minimization problem considering value-at-risk measure of loss. The given result allows to substantially decrease a number of constraints in the original problem and lets us turn to an equivalent mixed integer problem with admissible dimension.
Keywords: decision making under uncertainty, value-at-risk, scenario tree, stopping time, hedging.
@article{CGTM_2016_9_a9,
     author = {Alexey I. Soloviev},
     title = {Minimax estimation of value-at-risk under hedging of an {American} contingent claim in a discrete financial market},
     journal = {Contributions to game theory and management},
     pages = {276--286},
     publisher = {mathdoc},
     volume = {9},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2016_9_a9/}
}
TY  - JOUR
AU  - Alexey I. Soloviev
TI  - Minimax estimation of value-at-risk under hedging of an American contingent claim in a discrete financial market
JO  - Contributions to game theory and management
PY  - 2016
SP  - 276
EP  - 286
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2016_9_a9/
LA  - en
ID  - CGTM_2016_9_a9
ER  - 
%0 Journal Article
%A Alexey I. Soloviev
%T Minimax estimation of value-at-risk under hedging of an American contingent claim in a discrete financial market
%J Contributions to game theory and management
%D 2016
%P 276-286
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2016_9_a9/
%G en
%F CGTM_2016_9_a9
Alexey I. Soloviev. Minimax estimation of value-at-risk under hedging of an American contingent claim in a discrete financial market. Contributions to game theory and management, Tome 9 (2016), pp. 276-286. http://geodesic.mathdoc.fr/item/CGTM_2016_9_a9/

[1] Aho A. V., Sloane N. J. A., “Some doubly exponential sequences”, Fibonacci Quart., 11 (1973), 429–437 | MR | Zbl

[2] Black F., Scholes M., “The Pricing of options and corporate liabilities”, J. Polit. Econ., 81:3 (1973), 637–654 | DOI | MR | Zbl

[3] Camci A., Pinar M. C., “Pricing American contingent claims by stochastic linear programming”, Optimization, 58:6 (2009), 627–640 | DOI | MR | Zbl

[4] Chicago Mercantile Exchange. The Standart Portfolio Analysis of Risk (SPAN) performance bond system at the Chicago Mercantile Exchange, Technical specification, 1999

[5] Föllmer H., Leukert P., “Quantile hedging”, Financ. Stoch., 3:3 (1999), 251–273 | DOI | MR | Zbl

[6] Föllmer H., Schied A., Stochastic Finance: An Introduction in Discrete Time, Walter de Gruyter, Berlin, Germany, 2011 | MR

[7] Harrison J. M., Kreps D. M., “Martingales and arbitrage in multiperiod securities markets”, J. Econ. Theory, 20 (1979), 381–408 | DOI | MR | Zbl

[8] King A. J., “Duality and martingales: a stochastic programming perspective on contingent claims”, Math. Program., Ser. B, 91 (2002), 543–562 | DOI | MR | Zbl

[9] Lindberg P., “Optimal partial hedging of an American option: shifting the focus to the expiration date”, Math. Method. Oper. Res., 75:3 (2012), 221–243 | DOI | MR | Zbl

[10] McGarvey G., Sequence A135361, The On-Line Encyclopedia of Integer Sequences, , 2007 http://oeis.org/A135361

[11] Merton R. C., “Theory of rational option pricing”, Bell J. Econ., 4:1 (1973), 141–183 | DOI | MR | Zbl

[12] Novikov A. A., “Hedging of options with a given probability”, Theory Probab. Appl., 43:1 (1999), 135–143 | DOI | MR

[13] Perez-Hernandez L., “On the existence of an efficient hedge for an American contingent claim within a discrete time market”, Quant. Financ., 7:5 (2007), 547–551 | DOI | MR | Zbl

[14] Pinar M. C., “Buyer's quantile hedge portfolios in discrete-time trading”, Quant. Financ., 13:5 (2011), 729–738 | DOI | MR

[15] Pliska S. R., Introduction to Mathematical Finance: Discrete Time Models, Blackwell Publishers, Malden, MA, 1997

[16] Rockafellar R. T., Uryasev S., “Optimization of conditional value-at-risk”, J. Risk, 2:3 (2000), 21–41 | DOI

[17] Rockafellar R. T., Uryasev S., “Conditional value-at-risk for general loss distributions”, J. Bank. Financ., 26 (2002), 1443–1471 | DOI

[18] Sarykalin S., Serraino G., Uryasev S., “VaR vs. CVaR in risk management and optimization”, Tutorials in Operations Research: State-of-the-art Decision-making Tools in the Information-Intensive Age, Chap. 13, eds. Z.-L. Chen, S. Raghavan, INFORMS, Hanover, MD, 2008, 270–294

[19] Shiryaev A. N., Essentials of Stochastic Finance: Facts, Models, Theory, Advanced Series on Statistical Science Applied Probability, 3, World Scientific, Singapore, 1999 | DOI | MR