Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2015_8_a7, author = {Elena Gubar and Ekaterina Zhitkova and Ekaterina Kupchinenko and Natalia Petriakova}, title = {Two modes of vaccination program in controlled {SIR} model}, journal = {Contributions to game theory and management}, pages = {84--98}, publisher = {mathdoc}, volume = {8}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2015_8_a7/} }
TY - JOUR AU - Elena Gubar AU - Ekaterina Zhitkova AU - Ekaterina Kupchinenko AU - Natalia Petriakova TI - Two modes of vaccination program in controlled SIR model JO - Contributions to game theory and management PY - 2015 SP - 84 EP - 98 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CGTM_2015_8_a7/ LA - en ID - CGTM_2015_8_a7 ER -
%0 Journal Article %A Elena Gubar %A Ekaterina Zhitkova %A Ekaterina Kupchinenko %A Natalia Petriakova %T Two modes of vaccination program in controlled SIR model %J Contributions to game theory and management %D 2015 %P 84-98 %V 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/CGTM_2015_8_a7/ %G en %F CGTM_2015_8_a7
Elena Gubar; Ekaterina Zhitkova; Ekaterina Kupchinenko; Natalia Petriakova. Two modes of vaccination program in controlled SIR model. Contributions to game theory and management, Tome 8 (2015), pp. 84-98. http://geodesic.mathdoc.fr/item/CGTM_2015_8_a7/
[1] Behncke H., “Optimal control of deterministic epidemics”, Optim. Control Appl. Meth., 21 (2000), 269–285 | MR | Zbl
[2] Bonhoeffer S., May R. M., Shaw G. M., Nowak M. A., “Virus dynamics and drug therapy”, Proc. Natl. Acad. Sci. USA, 94 (1997), 6971–6976
[3] Conn M. (ed.), Handbook of Models for Human Aging, Elsevier Academic Press, London, 2006
[4] Fu F., Rosenbloom D. I., Wang L., Nowak M. A., “Imitation dynamics of vaccination behaviour on social networks”, Proceedings of the Royal Society. Proc. R. Soc. B, 278 (2010), 42–49
[5] Gjorgjieva J., Smith K., Chowell G., Sanchez F., Snyder J., Castillo-Chavez C., “The role of vaccination in the control of SARS”, Mathematical Biosciences and Engineering, 2:4 (2005), 753–769 | MR | Zbl
[6] Gubar E., Zhitkova E., “Decision making procedure in optimal control problem for the sir model”, Contributions to game theory and management, 6 (2013), 189–199 | MR
[7] Gubar E., Fotina L., Nikitina I., Zhitkova E., “Two models of the influenza epidemic”, Contributions to Game Theory and Management, 5 (2012), 107–120 | MR
[8] Gubar E., Zhu Q., “Optimal Control of Influenza Epidemic Model with Virus Mutations”, Proceedings of the European Control Conference, Proceedings of ECC13, European Control Association, Zurich, 2013, 3125–3130
[9] Khatri S., Rael R., Hyman J., The Role of Network Topology on the Initial Growth Rate of Influenza Epidemic, Technical report BU-1643-M, 2003
[10] Kermack W. O., Mc Kendrick A. G., “A contribution to themathematical theory of epidemics”, Proceedings of the Royal Society. Ser. A, 115:A771 (1927), 700–721 | Zbl
[11] Khouzani M. H. R., Sarkar S., Altman E., “Dispatch then stop: Optimal dissemination of security patches in mobile wireless networks”, CDC, 2010, 2354–2359
[12] Khouzani M. H. R., Sarkar S., Altman E., “Optimal Control of Epidemic Evolution”, Proceedings of IEEE INFOCOM (2011)
[13] Mehlhorn H. et al. (eds.), Encyclopedia of Parasitology, Third Edition, Springer-Verlag, Berlin–Heidelberg-New York, 2008
[14] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mishchenko E. F., The Mathematical Theory of Optimal Processes, Interscience, 1962 | MR | Zbl
[15] Traulsen A., Pacheco J. M., Nowak M. A., “Pairwise comparison and selection temperature in evolutionary game dynamics”, J. Theor. Biol., 246 (2007), 522–529 | MR
[16] Kolesin I., Gubar E., Zhitkova E., Strategies of control in medical and social systems, Unipress, SPbSU, SPbU, St. Petersburg, 2014
[17] Sandholm W. H., Population Games and Evolutionary Dynamics, MIT, 2011 | MR
[18] Sandholm W. H., Dokumaci E., Franchetti F., Dynamo: Diagrams for Evolutionary Game Dynamics, version 0.2.5, , 2010 http://www.ssc.wisc.edu/w̃hs/dynamo
[19] Weibull J., Evolutionary Game Theory, The M.I.T. Press, Cambridge, MA, 1995 | MR