A fuzzy-core extension of Scarf theorem and related topics
Contributions to game theory and management, Tome 8 (2015), pp. 300-314.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with a generalization of Scarf (Scarf, 1967) and Bondareva–Shapley (Bondareva, 1962; Shapley, 1967) theorems on the core of cooperative game to the case of fuzzy domination. The approach proposed is based on the concept of balanced collection of fuzzy coalitions, introduced by the author (Vasil’ev, 2012). This extension of classic notion of balanced collection of standard coalitions makes it possible to present a natural analog of balancedness for so-called fuzzy TU cooperative games. Moreover, it turns out that similar to the standard situation the new balancedness-like assumption is a necessary and sufficient condition for the non-emptyness of the core of fuzzy cooperative game with side payments.
Keywords: $F$-balanced collection, $F$-balanced fuzzy NTU game, $V$-balanced fuzzy TU game, core, $S^*$-representation.
@article{CGTM_2015_8_a23,
     author = {Valery A. Vasil'ev},
     title = {A fuzzy-core extension of {Scarf} theorem and related topics},
     journal = {Contributions to game theory and management},
     pages = {300--314},
     publisher = {mathdoc},
     volume = {8},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2015_8_a23/}
}
TY  - JOUR
AU  - Valery A. Vasil'ev
TI  - A fuzzy-core extension of Scarf theorem and related topics
JO  - Contributions to game theory and management
PY  - 2015
SP  - 300
EP  - 314
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2015_8_a23/
LA  - en
ID  - CGTM_2015_8_a23
ER  - 
%0 Journal Article
%A Valery A. Vasil'ev
%T A fuzzy-core extension of Scarf theorem and related topics
%J Contributions to game theory and management
%D 2015
%P 300-314
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2015_8_a23/
%G en
%F CGTM_2015_8_a23
Valery A. Vasil'ev. A fuzzy-core extension of Scarf theorem and related topics. Contributions to game theory and management, Tome 8 (2015), pp. 300-314. http://geodesic.mathdoc.fr/item/CGTM_2015_8_a23/

[1] Aubin J.-P., Optima and Equilibria, Springer-Verlag, Berlin–Heidelberg, 1993 | MR | Zbl

[2] Bondareva O. N., “Core theory for $n$-person game”, Vestnik Leningrad. Univer., ser. matem., 1962, no. 17, 141–142 | MR | Zbl

[3] Ekeland I., Éléments d'Économy Mathématique, Hermann, Paris, 1979

[4] Hildenbrand W., Kirman A. P., Equilibrium Analysis, North-Holland, Amsterdam–New York–Oxford–Tokyo, 1991 | MR

[5] Peleg B., Sudhölter P., Introduction to the Theory of Cooperative Games, Kluwer Academic Publishers, Boston–Dordrecht–London, 2003 | MR

[6] Rockafellar R. T., Convex Analysis, Princeton University Press, Princeton, NJ, 1970 | MR | Zbl

[7] Scarf H. E., “The core of an $n$-person game”, Econometrica, 35 (1967), 50–69 | MR | Zbl

[8] Shapley L. S., “On balanced sets and cores”, Naval Research Logistics Quarterly, 14 (1967), 453–460

[9] Vasil'ev V. A., “Generalized von Neumann–Morgenstern solutions and accessibility of cores”, Soviet Math. Dokl., 36 (1987), 374–378 | MR

[10] Vasil'ev V. A., “Cores and generalized NM-solutions for some classes of cooperative games”, Russian Contributions to Game Theory and Equilibrium Theory, eds. Driessen T. S. H., van der Laan G., Vasil'ev V. A., Yanovskaya E. B., Springer-Verlag, Berlin-New York, 2006, 91–150

[11] Vasil'ev V. A., An extension of Scarf theorem on the nonemptiness of the core, Discussion Paper, No 283, Sobolev Inst. Math., Novosibirsk, 2012, 41 pp.