Multistage game model with time-claiming alternatives
Contributions to game theory and management, Tome 8 (2015), pp. 252-267.

Voir la notice de l'article provenant de la source Math-Net.Ru

The new model of multistage game with perfect information, on a closed time interval is considered. On each stage of the game player chooses one of the alternatives and time to perform them. The payoffs depend upon trajectory and the time, at which game terminates. As a solution of this game subgame perfect $\epsilon$-Nash equilibrium is taken.
Keywords: Perfect information, Nash equilibrium, Time-claiming alternative.
@article{CGTM_2015_8_a19,
     author = {Ovanes L. Petrosyan and Levon K. Babadzanjanz},
     title = {Multistage game model with time-claiming alternatives},
     journal = {Contributions to game theory and management},
     pages = {252--267},
     publisher = {mathdoc},
     volume = {8},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2015_8_a19/}
}
TY  - JOUR
AU  - Ovanes L. Petrosyan
AU  - Levon K. Babadzanjanz
TI  - Multistage game model with time-claiming alternatives
JO  - Contributions to game theory and management
PY  - 2015
SP  - 252
EP  - 267
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2015_8_a19/
LA  - en
ID  - CGTM_2015_8_a19
ER  - 
%0 Journal Article
%A Ovanes L. Petrosyan
%A Levon K. Babadzanjanz
%T Multistage game model with time-claiming alternatives
%J Contributions to game theory and management
%D 2015
%P 252-267
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2015_8_a19/
%G en
%F CGTM_2015_8_a19
Ovanes L. Petrosyan; Levon K. Babadzanjanz. Multistage game model with time-claiming alternatives. Contributions to game theory and management, Tome 8 (2015), pp. 252-267. http://geodesic.mathdoc.fr/item/CGTM_2015_8_a19/

[1] Petrosyan L., Zenkevich N., Game Theory, World Scientific Publisher, 1996 | MR | Zbl

[2] Papayoanou P., Game Theory of Business, Probalistic Publishing, 2010

[3] Reinhard S., “Multistage Game Models and Delay Supergames”, Theory and Decision, 44 (1998), 1–36 | MR | Zbl

[4] Nash J., “Non-cooperative Games”, Annals of Mathematics, 54 (1951), 284–295 | MR

[5] Kuhn H., “Extensive games and problems of information”, Contributions to the theory of games II, 1953, 193–216 | MR | Zbl