Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2015_8_a18, author = {Osman Palanci and S. Zeynep Alparslan G\"ok and Gerhard-Wilhelm Weber}, title = {An axiomatization of the interval {Shapley} value and on some interval solution concepts}, journal = {Contributions to game theory and management}, pages = {243--251}, publisher = {mathdoc}, volume = {8}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2015_8_a18/} }
TY - JOUR AU - Osman Palanci AU - S. Zeynep Alparslan Gök AU - Gerhard-Wilhelm Weber TI - An axiomatization of the interval Shapley value and on some interval solution concepts JO - Contributions to game theory and management PY - 2015 SP - 243 EP - 251 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CGTM_2015_8_a18/ LA - en ID - CGTM_2015_8_a18 ER -
%0 Journal Article %A Osman Palanci %A S. Zeynep Alparslan Gök %A Gerhard-Wilhelm Weber %T An axiomatization of the interval Shapley value and on some interval solution concepts %J Contributions to game theory and management %D 2015 %P 243-251 %V 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/CGTM_2015_8_a18/ %G en %F CGTM_2015_8_a18
Osman Palanci; S. Zeynep Alparslan Gök; Gerhard-Wilhelm Weber. An axiomatization of the interval Shapley value and on some interval solution concepts. Contributions to game theory and management, Tome 8 (2015), pp. 243-251. http://geodesic.mathdoc.fr/item/CGTM_2015_8_a18/
[1] Alparslan Gök S. Z., Cooperative interval games, PhD Dissertation Thesis, Institute of Applied Mathematics, Middle East Technical University, 2009
[2] Alparslan Gök S. Z., Cooperative Interval Games: Theory and Applications, Lambert Academic Publishing, Germany, 2010
[3] Alparslan Gök S. Z., Branzei R., Fragnelli V., Tijs S., “Sequencing interval situations and related games”, Central European Journal of Operations Research, 21:1 (2013), 225–236 | MR
[4] Alparslan Gök S. Z., Branzei R., Tijs S., “Convex interval games”, Journal of Applied Mathematics and Decision Sciences, 2009 (2009), 342089, 14 pp. | DOI | MR | Zbl
[5] Alparslan Gök S. Z., Branzei R., Tijs S., “Airport interval games and their Shapley value”, Operations Research and Decisions, 19:2 (2009), 9–18 | MR
[6] Alparslan Gök S. Z., Branzei R., Tijs S., “The interval Shapley value: an axiomatization”, Central European Journal of Operations Research, 18:2 (2010), 131–140 | MR | Zbl
[7] Alparslan Gök S. Z., Miquel S., Tijs S., “Cooperation under interval uncertainty”, Mathematical Methods of Operations Research, 69 (2009), 99–109 | MR | Zbl
[8] Banzhaf J. F., “Weighted Voting Doesn't Work: A Mathematical Analysis”, Rutgers Law Review, 19 (1965), 317–343
[9] Branzei R., Dimitrov D., Tijs S., “Shapley-like values for interval bankruptcy games”, Economics Bulletin, 3 (2003), 1–8 | MR
[10] Branzei R., Mallozzi L., Tijs S., “Peer group situations and games with interval uncertainty”, International Journal of Mathematics, Game Theory and Algebra, 19:5–6 (2010), 381–388 | MR
[11] Hart S., Mas-Colell A., “Potential, value and consistency”, Econometrica, 57 (1989), 589–614 | MR | Zbl
[12] Kalai E., Samet D., “Monotonic Solutions to General Cooperative Games”, Econometrica, 53:2 (1985), 307–327 | MR | Zbl
[13] Kimms A., Drechsel J., “Cost sharing under uncertainty: an algorithmic approach to cooperative interval-valued games”, Business Research, 2:2 (1989), 206–213
[14] Monderer D., Samet D., Shapley L. S., “Weighted Shapley values and the core”, International Journal of Game Theory, 21 (1992), 27–39 | MR | Zbl
[15] Moore R., Methods and Applications of Interval Analysis, SIAM, Philadelphia, 1979 | MR | Zbl
[16] Moretti S., Alparslan Gök S. Z., Branzei R., Tijs S., “Connection situations under uncertainty and cost monotonic solutions”, Computers and Operations Research, 38:11 (2011), 1638–1645 | MR | Zbl
[17] Owen G., “Multilinear extentions of games”, Management Science, 18 (1972), 64–79 | MR | Zbl
[18] Shapley L. S., “A value for $n$-person games”, Annals of Mathematics Studies, 28, 1953, 307–317 | MR | Zbl
[19] Tijs S., Introduction to Game Theory, Texts and Readings in Mathematics, 23, Hindustan Book Agency, New Delhi, India, 2003 | MR | Zbl
[20] Timmer J., Borm P., Tijs S., “On three Shapley-like solutions for cooperative games with random payoffs”, International Journal of Game Theory, 32 (2003), 595–613 | MR
[21] van den Brink R., “An axiomatization of the Shapley value using a fairness property”, International Journal of Game Theory, 30:3 (2002), 309–319 | MR
[22] Young H. P., “Monotonic solutions of cooperative games”, International Journal of Game Theory, 14 (1985), 65–72 | MR | Zbl