An axiomatization of the interval Shapley value and on some interval solution concepts
Contributions to game theory and management, Tome 8 (2015), pp. 243-251.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Shapley value, one of the most common solution concepts in Operations Research applications of cooperative game theory, is defined and axiomatically characterized in different game-theoretical models. In this paper, we focus on the Shapley value for cooperative games where the set of players is finite and the coalition values are compact intervals of real numbers. In this study, we study the properties of the interval Shapley value on the class of size monotonic interval games, and axiomatically characterize its restriction to a special subclass of cooperative interval games by using fairness property, efficiency and the null player property. Further, we introduce the interval Banzhaf value and the interval egalitarian rule. Finally, the paper ends with a conclusion and an outlook to future studies.
Keywords: Shapley value, Banzhaf value, egalitarian rule, interval uncertainty, fairness property.
@article{CGTM_2015_8_a18,
     author = {Osman Palanci and S. Zeynep Alparslan G\"ok and Gerhard-Wilhelm Weber},
     title = {An axiomatization of the interval {Shapley} value and on some interval solution concepts},
     journal = {Contributions to game theory and management},
     pages = {243--251},
     publisher = {mathdoc},
     volume = {8},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2015_8_a18/}
}
TY  - JOUR
AU  - Osman Palanci
AU  - S. Zeynep Alparslan Gök
AU  - Gerhard-Wilhelm Weber
TI  - An axiomatization of the interval Shapley value and on some interval solution concepts
JO  - Contributions to game theory and management
PY  - 2015
SP  - 243
EP  - 251
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2015_8_a18/
LA  - en
ID  - CGTM_2015_8_a18
ER  - 
%0 Journal Article
%A Osman Palanci
%A S. Zeynep Alparslan Gök
%A Gerhard-Wilhelm Weber
%T An axiomatization of the interval Shapley value and on some interval solution concepts
%J Contributions to game theory and management
%D 2015
%P 243-251
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2015_8_a18/
%G en
%F CGTM_2015_8_a18
Osman Palanci; S. Zeynep Alparslan Gök; Gerhard-Wilhelm Weber. An axiomatization of the interval Shapley value and on some interval solution concepts. Contributions to game theory and management, Tome 8 (2015), pp. 243-251. http://geodesic.mathdoc.fr/item/CGTM_2015_8_a18/

[1] Alparslan Gök S. Z., Cooperative interval games, PhD Dissertation Thesis, Institute of Applied Mathematics, Middle East Technical University, 2009

[2] Alparslan Gök S. Z., Cooperative Interval Games: Theory and Applications, Lambert Academic Publishing, Germany, 2010

[3] Alparslan Gök S. Z., Branzei R., Fragnelli V., Tijs S., “Sequencing interval situations and related games”, Central European Journal of Operations Research, 21:1 (2013), 225–236 | MR

[4] Alparslan Gök S. Z., Branzei R., Tijs S., “Convex interval games”, Journal of Applied Mathematics and Decision Sciences, 2009 (2009), 342089, 14 pp. | DOI | MR | Zbl

[5] Alparslan Gök S. Z., Branzei R., Tijs S., “Airport interval games and their Shapley value”, Operations Research and Decisions, 19:2 (2009), 9–18 | MR

[6] Alparslan Gök S. Z., Branzei R., Tijs S., “The interval Shapley value: an axiomatization”, Central European Journal of Operations Research, 18:2 (2010), 131–140 | MR | Zbl

[7] Alparslan Gök S. Z., Miquel S., Tijs S., “Cooperation under interval uncertainty”, Mathematical Methods of Operations Research, 69 (2009), 99–109 | MR | Zbl

[8] Banzhaf J. F., “Weighted Voting Doesn't Work: A Mathematical Analysis”, Rutgers Law Review, 19 (1965), 317–343

[9] Branzei R., Dimitrov D., Tijs S., “Shapley-like values for interval bankruptcy games”, Economics Bulletin, 3 (2003), 1–8 | MR

[10] Branzei R., Mallozzi L., Tijs S., “Peer group situations and games with interval uncertainty”, International Journal of Mathematics, Game Theory and Algebra, 19:5–6 (2010), 381–388 | MR

[11] Hart S., Mas-Colell A., “Potential, value and consistency”, Econometrica, 57 (1989), 589–614 | MR | Zbl

[12] Kalai E., Samet D., “Monotonic Solutions to General Cooperative Games”, Econometrica, 53:2 (1985), 307–327 | MR | Zbl

[13] Kimms A., Drechsel J., “Cost sharing under uncertainty: an algorithmic approach to cooperative interval-valued games”, Business Research, 2:2 (1989), 206–213

[14] Monderer D., Samet D., Shapley L. S., “Weighted Shapley values and the core”, International Journal of Game Theory, 21 (1992), 27–39 | MR | Zbl

[15] Moore R., Methods and Applications of Interval Analysis, SIAM, Philadelphia, 1979 | MR | Zbl

[16] Moretti S., Alparslan Gök S. Z., Branzei R., Tijs S., “Connection situations under uncertainty and cost monotonic solutions”, Computers and Operations Research, 38:11 (2011), 1638–1645 | MR | Zbl

[17] Owen G., “Multilinear extentions of games”, Management Science, 18 (1972), 64–79 | MR | Zbl

[18] Shapley L. S., “A value for $n$-person games”, Annals of Mathematics Studies, 28, 1953, 307–317 | MR | Zbl

[19] Tijs S., Introduction to Game Theory, Texts and Readings in Mathematics, 23, Hindustan Book Agency, New Delhi, India, 2003 | MR | Zbl

[20] Timmer J., Borm P., Tijs S., “On three Shapley-like solutions for cooperative games with random payoffs”, International Journal of Game Theory, 32 (2003), 595–613 | MR

[21] van den Brink R., “An axiomatization of the Shapley value using a fairness property”, International Journal of Game Theory, 30:3 (2002), 309–319 | MR

[22] Young H. P., “Monotonic solutions of cooperative games”, International Journal of Game Theory, 14 (1985), 65–72 | MR | Zbl