Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2015_8_a14, author = {Dmitrii Lozovanu and Stefan Pickl}, title = {On {Nash} equilibria for stochastic games and determining the optimal strategies of the players}, journal = {Contributions to game theory and management}, pages = {187--198}, publisher = {mathdoc}, volume = {8}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2015_8_a14/} }
TY - JOUR AU - Dmitrii Lozovanu AU - Stefan Pickl TI - On Nash equilibria for stochastic games and determining the optimal strategies of the players JO - Contributions to game theory and management PY - 2015 SP - 187 EP - 198 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CGTM_2015_8_a14/ LA - en ID - CGTM_2015_8_a14 ER -
%0 Journal Article %A Dmitrii Lozovanu %A Stefan Pickl %T On Nash equilibria for stochastic games and determining the optimal strategies of the players %J Contributions to game theory and management %D 2015 %P 187-198 %V 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/CGTM_2015_8_a14/ %G en %F CGTM_2015_8_a14
Dmitrii Lozovanu; Stefan Pickl. On Nash equilibria for stochastic games and determining the optimal strategies of the players. Contributions to game theory and management, Tome 8 (2015), pp. 187-198. http://geodesic.mathdoc.fr/item/CGTM_2015_8_a14/
[1] Dasgupta P., Maskin E., “The existence of Equilibrium in Discontinuous Economic Games”, Review of Economic Studies, 53 (1986), 1–26 | MR | Zbl
[2] Debreu G., “A Social Equilibrium Existence Theorem”, Proceedings of the National Academy of Sciences, 1952, 386–393 | MR
[3] Filar J. A., Vrieze K., Competitive Markov Decision Processes, Springer, 1997 | MR | Zbl
[4] Gillette D., “Stochastic games with zero stop probabilities”, Contribution to the Theory of Games, v. III, Princeton, 1957, 179–187 | MR | Zbl
[5] Lal A. K., Sinha S., “Zero-sum two person semi-Markov games”, J. Appl. Prob., 29 (1992), 56–72 | MR | Zbl
[6] Lozovanu D., “The game-theoretical approach to Markov decision problems and determining Nash equilibria for stochastic positional games”, Int. J. Mathematical Modelling and Numerical Optimization, 2:2 (2011), 162–164
[7] Lozovanu D., Pickl S., “Nash equilibria conditions for stochastic positional games”, Contribution to Game Theory and Management, 7 (2014), 201–213 | MR
[8] Lozovanu D., Pickl S., Optimization of Stochastic Discrete Systems and Control on Complex Networks, Springer, 2015 | MR | Zbl
[9] Mertens J. F., Neyman A., “Stochastic games”, International Journal of Game Theory, 10 (1981), 53–66 | MR | Zbl
[10] Neyman A., Sorin S., Stochastic games and applications, NATO ASI series, Kluwer Academic press, 2003 | MR | Zbl
[11] Owen G., Game Theory, 2nd edition, Academic Press, New York, 1982 | MR | Zbl
[12] Puterman M., Markov Decision Processes: Stochastic Dynamic Programming, John Wiley, New Jersey, 2005
[13] Reny F., “On the existence of Pure and Mixed Strategy Nash Equilibria In Discontinuous Games”, Economertrica, 67 (1999), 1029–1056 | MR | Zbl
[14] Shapley L., “Stochastic games”, Proc. Natl. Acad. Sci. U.S.A., 39 (1953), 1095–1100 | MR | Zbl
[15] Simon L., “Games with Discontinuous Payoffs”, Review of Economic Studies, 54 (1987), 569–597 | MR | Zbl