Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2015_8_a11, author = {Dmitry Kravchenko}, title = {Quantum entanglement in a zero-sum game}, journal = {Contributions to game theory and management}, pages = {149--163}, publisher = {mathdoc}, volume = {8}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2015_8_a11/} }
Dmitry Kravchenko. Quantum entanglement in a zero-sum game. Contributions to game theory and management, Tome 8 (2015), pp. 149-163. http://geodesic.mathdoc.fr/item/CGTM_2015_8_a11/
[1] Ambainis A., Bačkurs A., Balodis K., Kravchenko D., Ozols R., Smotrovs J., Virza M., “Quantum strategies are better than classical in almost any XOR game”, Proceedings of ICALP'2012, v. 1, 2012, 25–37 | MR | Zbl
[2] Ambainis A., Kravchenko D., Nahimovs N., Rivosh A., Virza M., “On Symmetric Nonlocal Games”, Theoretical Computer Science, 494 (2013), 36–48 | MR | Zbl
[3] Ambainis A., “A New Protocol and Lower Bounds for Quantum Coin Flipping”, Journal of Computer and System Sciences, 68:2 (2004), 398–416 | MR | Zbl
[4] Ardehali M., “Bell inequalities with a magnitude of violation that grows exponentially with the number of particles”, Phys. Rev. A, 46 (1992), 5375–5378 | MR
[5] Benjamin S. C., Hayden P. M., “Comment on “Quantum Games and Quantum Strategies””, Phys. Rev. Lett., 87:6 (2001), 069801
[6] Benjamin S. C., Hayden P. M., “Multi-Player Quantum Games”, Phys. Rev. A, 64:3 (2001), 030301
[7] Briët J., Vidick T., “Explicit Lower and Upper Bounds on the Entangled Value of Multiplayer XOR Games”, Communications in Mathematical Physics, 2012, Online First Articles
[8] Clauser J. F., Horne M. A., Shimony A., Holt R. A., “Proposed Experiment to Test Local Hidden-Variable Theories”, Phys. Rev. Lett., 23 (1969), 880
[9] Cleve R., Høyer P., Toner B., Watrous J., “Consequences and limits of nonlocal strategies”, Proceedings of CCC'2004 (2004), 236–249
[10] Dahl G. B., Landsburg S. E., Quantum Strategies, , 2011 http://dss.ucsd.edu/g̃dahl/papers/quantum-strategies.pdf
[11] Enk S. J. van, Pike R., “Classical Rules in Quantum Games”, Phys. Rev. A, 66 (2002), 024306 | MR
[12] Eisert J., Wilkens M., Lewenstein M., “Quantum Games and Quantum Strategies”, Phys. Rev. Lett., 83 (1999), 3077 | MR | Zbl
[13] Jain R., Watrous J., “Parallel Approximation of Non-interactive Zero-sum Quantum Games”, Proceedings of CCC'2009 (2009), 243–253 | MR
[14] Kitaev A. Yu., Quantum coin-flipping, Presentation at QIP'2003, , 2002 http://www.msri.org/realvideo/ln/msri/2002/qip/kitaev
[15] Kravchenko D., “A New Quantization Scheme for Classical Games”, Proceedings of Workshop on Quantum and Classical Complexity (satellite event to ICALP'2013), 2013, 17–34
[16] Mermin D., “Extreme Quantum Entanglement in a Superposition of Macroscopically Distinct States”, Phys. Rev. Lett., 65 (1990), 15 | MR | Zbl
[17] Meyer D. A., “Quantum strategies”, Phys. Rev. Lett., 82 (1999), 1052–1055 | MR | Zbl
[18] Muhammad S., Tavakoli A., Kurant M., Pawlowski M., Zukowski M., Bourennane M., “Quantum bidding in Bridge”, Phys. Rev. X, 4 (2014), 021047
[19] Neumann J. von, Morgenstern O., Theory of games and economic behavior, Princeton University Press, 1953 | Zbl
[20] Zhang Sh., “Quantum strategic game theory”, Proceedings of ITCS'2012 (2012), 39–59