Differential games with random duration: a hybrid systems formulation
Contributions to game theory and management, Tome 7 (2014), pp. 104-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

The contribution of this paper is two-fold. First, a new class of differential games with random duration and a composite cumulative distribution function is introduced. Second, it is shown that these games can be well defined within the hybrid systems framework and that the problem of finding the optimal strategy can be posed and solved with the methods of hybrid optimal control theory. An illustrative example is given.
Keywords: games, hybrid, etc.
@article{CGTM_2014_7_a9,
     author = {Dmitry Gromov and Ekaterina Gromova},
     title = {Differential games with random duration: a hybrid systems formulation},
     journal = {Contributions to game theory and management},
     pages = {104--119},
     publisher = {mathdoc},
     volume = {7},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2014_7_a9/}
}
TY  - JOUR
AU  - Dmitry Gromov
AU  - Ekaterina Gromova
TI  - Differential games with random duration: a hybrid systems formulation
JO  - Contributions to game theory and management
PY  - 2014
SP  - 104
EP  - 119
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2014_7_a9/
LA  - en
ID  - CGTM_2014_7_a9
ER  - 
%0 Journal Article
%A Dmitry Gromov
%A Ekaterina Gromova
%T Differential games with random duration: a hybrid systems formulation
%J Contributions to game theory and management
%D 2014
%P 104-119
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2014_7_a9/
%G en
%F CGTM_2014_7_a9
Dmitry Gromov; Ekaterina Gromova. Differential games with random duration: a hybrid systems formulation. Contributions to game theory and management, Tome 7 (2014), pp. 104-119. http://geodesic.mathdoc.fr/item/CGTM_2014_7_a9/

[1] Azhmyakov V., Attia S. A., Gromov D., Raisch J., “Necessary optimality conditions for a class of hybrid optimal control problems”, HSCC 2007, LNCS 4416, eds. A. Bemporad, A. Bicchi, G. Butazzo, Springer-Verlag, 2007, 637–640 | MR | Zbl

[2] Bardi M., Capuzzo-Dolcetta I., Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations, Birkhäuser, 1997 | MR | Zbl

[3] Boukas E. K., Haurie A., Michel P., “An optimal control problem with a random stopping time”, Journal of optimization theory and applications, 64:3 (1990), 471–480 | DOI | MR | Zbl

[4] Chang F. R., Stochastic Optimization in Continuous Time, Cambridge Univ. Press, 2004 | MR

[5] Dockner E. J., Jorgensen S., van Long N., Sorger G., Differential Games in Economics and Management Science, Cambridge Univ. Press, 2000 | MR | Zbl

[6] Kostyunin S., Shevkoplyas E., “On simplification of integral payoff in differential games with random duration”, Vestnik St.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2011, no. 4, 47–56

[7] Lee E. B., Markus L., Foundations of optimal control theory, Wiley, 1967 | MR | Zbl

[8] Petrosyan L. A., Murzov N. V., “Game-theoretic problems of mechanics”, Litovsk. Math. Sb., 6 (1966), 423–433 (in Russian) | MR

[9] Petrosyan L. A., Shevkoplyas E. V., “Cooperative solutions for games with random duration”, Game Theory and Applications, v. IX, 2003, 125–139 | MR

[10] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mishchenko E. F., The Mathematical Theory of Optimal Processes, Wiley-Interscience, 1963 | MR

[11] Riedinger P., Iung C., Kratz F., “An optimal control approach for hybrid systems”, European Journal of Control, 9:5 (2003), 449–458 | DOI | Zbl

[12] Royden H. L., Real Analysis, 3rd edition, Prentice Hall, 1988 | MR

[13] Shaikh M. S., Caines P. E., “On the hybrid optimal control problem: Theory and algorithms”, IEEE Transactions on Automatic Control, 52:9 (2007), 1587–1603 | DOI | MR

[14] Vinter R., Optimal Control, Birkhäuser, 2000 | MR

[15] Yaari M. E., “Uncertain lifetime, life insurance, and the theory of the consumer”, The Review of Econimic Studies, 32:2 (1965), 137–150 | DOI

[16] Zorich V. A., Mathematical Analysis, v. II, Springer, 2004 | Zbl