Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2014_7_a4, author = {Theo Driessen and Aymeric Lardon and Dongshuang Hou}, title = {Stackelberg oligopoly games: the model and the $1$-concavity of its dual game}, journal = {Contributions to game theory and management}, pages = {34--50}, publisher = {mathdoc}, volume = {7}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2014_7_a4/} }
TY - JOUR AU - Theo Driessen AU - Aymeric Lardon AU - Dongshuang Hou TI - Stackelberg oligopoly games: the model and the $1$-concavity of its dual game JO - Contributions to game theory and management PY - 2014 SP - 34 EP - 50 VL - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CGTM_2014_7_a4/ LA - en ID - CGTM_2014_7_a4 ER -
%0 Journal Article %A Theo Driessen %A Aymeric Lardon %A Dongshuang Hou %T Stackelberg oligopoly games: the model and the $1$-concavity of its dual game %J Contributions to game theory and management %D 2014 %P 34-50 %V 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/CGTM_2014_7_a4/ %G en %F CGTM_2014_7_a4
Theo Driessen; Aymeric Lardon; Dongshuang Hou. Stackelberg oligopoly games: the model and the $1$-concavity of its dual game. Contributions to game theory and management, Tome 7 (2014), pp. 34-50. http://geodesic.mathdoc.fr/item/CGTM_2014_7_a4/
[1] Chander P., Tulkens H., “The Core of an Economy with Multilateral Environmental Externalities”, International Journal of Game Theory, 26 (1997), 379–401 | DOI | MR | Zbl
[2] Driessen T. S. H., Cooperative Games, Solutions, and Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1988 | Zbl
[3] Driessen T. S. H., Meinhardt H. I., “Convexity of oligopoly games without transferable technologies”, Mathematical Social Sciences, 50 (2005), 102–126 | DOI | MR | Zbl
[4] Driessen T. S. H., Hou Dongshuang, Aymeric Lardon, Stackelberg Oligopoly TU-games: Characterization of the core and $1$-concavity of the dual game, Working Paper, Department of Applied Mathematics, University of Twente, Enschede, The Netherlands, 2011
[5] Driessen T. S. H., Hou Dongshuang, Aymeric Lardon, A necessary and sufficient condition for the non-emptiness of the core in Stackelberg Oligopoly TU games, Working paper, University of Saint-Etienne, France, 2011 | Zbl
[6] Lardon A., The $\gamma$-core of Cournot oligopoly TU games with capacity constraints, Working paper, University of Saint-Etienne, France, 2009
[7] Lardon A., Five Essays on Cooperative Oligopoly Games, PhD Thesis, 13 October 2011, University of Saint-Etienne, Universite Jean Monnet de Saint-Etienne, France
[8] Norde H., Do K. H. P., Tijs S. H., “OLigopoly Games with and without transferable technologies”, Mathematical Social Sciences, 43 (2002), 187–207 | DOI | MR | Zbl
[9] Sherali H. D., Soyster A. L., Murphy F. H., “Stackelberg–Nash–Cournot Equilibria, Characterizations and Computations”, Operations Research, 31:2 (1983), 253–276 | DOI | MR | Zbl
[10] Tijs S. H., “Bounds for the core and the $\tau$-value”, Game Theory and Mathematical Economics, North-Holland Publishing Company, Amsterdam, 1981, 123–132
[11] Zhao J., “A necessary and sufficient condition for the convexity in oligopoly games”, Mathematical Social Sciences, 37 (1999), 187–207 | DOI | MR
[12] Zhao J., “A $\beta$-core existence result and its application to oligopoly markets”, Games and Economics Behavior, 27 (1999), 153–168 | DOI | MR | Zbl