Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2014_7_a30, author = {\"Ozer Sel\c{c}uk and Takamasa Suzuki}, title = {An axiomatization of the {Myerson} value}, journal = {Contributions to game theory and management}, pages = {341--348}, publisher = {mathdoc}, volume = {7}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2014_7_a30/} }
Özer Selçuk; Takamasa Suzuki. An axiomatization of the Myerson value. Contributions to game theory and management, Tome 7 (2014), pp. 341-348. http://geodesic.mathdoc.fr/item/CGTM_2014_7_a30/
[1] Borm P., Owen G., Tijs S., “On the position value for communication situations”, SIAM Journal of Discrete Mathematics, 5 (1992), 305–320 | DOI | MR | Zbl
[2] Brink R. van den, “An axiomatization of the Shapley value using a fairness property”, International Journal of Game Theory, 30 (2002), 309–319 | DOI | MR
[3] Brink R. van den, Comparable axiomatizations of the Myerson value, the restricted Banzhaf value, hierarchical outcomes and the average tree solution for cycle-free graph restricted games, Tinbergen Institute Discussion Paper 2009-108/1, Tinbergen Institute, Amsterdam, 2009
[4] Myerson R. B., “Graphs and cooperation in games”, Mathematics of Operations Research, 2 (1977), 225–229 | DOI | MR | Zbl
[5] Shapley L., “A value for $n$-person games”, Contributions to the Theory of Games, v. II, eds. Kuhn H. W., Tucker A. W., Princeton University Press, Princeton, 1953, 307–317 | MR
[6] Young H. P., “Monotonic solutions of cooperative games”, International Journal of Game Theory, 14 (1985), 65–72 | DOI | MR | Zbl