Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2014_7_a3, author = {Irinel Dragan}, title = {On the inverse problem and the coalitional rationality for binomial semivalues of cooperative {TU} games}, journal = {Contributions to game theory and management}, pages = {24--33}, publisher = {mathdoc}, volume = {7}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2014_7_a3/} }
TY - JOUR AU - Irinel Dragan TI - On the inverse problem and the coalitional rationality for binomial semivalues of cooperative TU games JO - Contributions to game theory and management PY - 2014 SP - 24 EP - 33 VL - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CGTM_2014_7_a3/ LA - en ID - CGTM_2014_7_a3 ER -
Irinel Dragan. On the inverse problem and the coalitional rationality for binomial semivalues of cooperative TU games. Contributions to game theory and management, Tome 7 (2014), pp. 24-33. http://geodesic.mathdoc.fr/item/CGTM_2014_7_a3/
[1] Banzhaf J. F., “Weighted voting doesn't work; a mathematical analysis”, Rutgers Law Review, 19 (1965), 317–343
[2] Dragan I., “The potential basis and the weighted Shapley value”, Libertas Mathematica, 11 (1991), 139–150 | MR | Zbl
[3] Dragan I., “New mathematical properties of the Banzhaf value”, E.J.O.R., 95 (1996), 451–463 | DOI | Zbl
[4] Dragan I., Martinez-Legaz J. E., “On the Semivalues and the Power Core of cooperative TU games”, IGTR, 3:2–3 (2001), 127–139 | MR | Zbl
[5] Dragan I., “On the inverse problem for Semivalues of cooperative TU Games”, IJPAM, 4 (2004), 545–561 | MR
[6] Dragan I., “On the Inverse Problem for Binomial Semivalue”, Proc. GDN2013 Conference (Stockholm, 2013), 191–198
[7] Dubey P., Neyman A., Weber R. J., “Value theory without efficiency”, Math.O.R., 6 (1981), 122–128 | DOI | MR | Zbl
[8] Puente M. A., Contributions to the representability of simple games and to the calculus of solutions for this class of games, Ph.D. Thesis, University of Catalonya, Barcelona, Spain, 2000
[9] Freixas J., Puente M. A., “Reliability importance measures of the components in a system based upon semivalues and probabilistic values”, Ann.,O.R., 109 (2002), 331–342 | DOI | MR | Zbl
[10] Shapley L. S., “A value for n-person games”, Annals of Math. Studies, 28, 1953, 307–317 | MR | Zbl