An axiomatization of the proportional prenucleolus
Contributions to game theory and management, Tome 7 (2014), pp. 246-253.

Voir la notice de l'article provenant de la source Math-Net.Ru

The proportional prenucleolus is defined on the class of all positive TU games with finite sets of players. The set of axioms used by Sobolev (1975) for axiomatic justification of the prenucleolus is modified. It is proved that the proportional prenucleolus is a unique value that satisfies 4 axioms: efficiency, anonymity, proportionality, and proportional DM consistency. The proof is a modification of the proof of Sobolev's theorem. For strictly increasing concave function $U$ defined on $(0,+\infty)$ with range equal to ${\rm R}^1$, a generalization of the proportional prenucleolus is called $U$–prenucleolus. The axioms proportionality and proportional DM consistency are generalized for its justification.
Keywords: cooperative games; proportional nucleolus; prenucleolus; consistency.
@article{CGTM_2014_7_a21,
     author = {Natalia Naumova},
     title = {An axiomatization of the proportional prenucleolus},
     journal = {Contributions to game theory and management},
     pages = {246--253},
     publisher = {mathdoc},
     volume = {7},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2014_7_a21/}
}
TY  - JOUR
AU  - Natalia Naumova
TI  - An axiomatization of the proportional prenucleolus
JO  - Contributions to game theory and management
PY  - 2014
SP  - 246
EP  - 253
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2014_7_a21/
LA  - en
ID  - CGTM_2014_7_a21
ER  - 
%0 Journal Article
%A Natalia Naumova
%T An axiomatization of the proportional prenucleolus
%J Contributions to game theory and management
%D 2014
%P 246-253
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2014_7_a21/
%G en
%F CGTM_2014_7_a21
Natalia Naumova. An axiomatization of the proportional prenucleolus. Contributions to game theory and management, Tome 7 (2014), pp. 246-253. http://geodesic.mathdoc.fr/item/CGTM_2014_7_a21/

[1] Justman M., “Iterative processes with nucleolar restrictions”, International Journal of Game Theory, 6 (1977), 189–212 | DOI | MR | Zbl

[2] Kohlberg E., “On the nucleolus of a characteristic function game”, SIAM Journal on Applied Mathematics, 20:1 (1971), 62–66 | DOI | MR | Zbl

[3] Maschler M., Peleg B., Shapley L. S., “Geometric properties of the kernel, the nucleolus and related solution concepts”, Math. Oper. Res., 4 (1979), 303–338 | DOI | MR | Zbl

[4] Maschler M., Solan E., Zamir S., Game theory, Cambridge University Press, 2013, 979 pp. | MR | Zbl

[5] Orshan G., “The prenucleolus and the reduced game property: Equal treatment replaces anonymity”, International Journal of Game Theory, 22 (1993), 241–248 | DOI | MR | Zbl

[6] Peleg B., Sudholter P., Introduction to the theory of cooperative games, Chap. 6, Springer-Verlag, Berlin–Heidelberg–New York, 2007 | MR

[7] Schmeidler D., “The nucleolus of a characteristic function game”, SIAM Journal on Applied Mathematics, 17:6 (1969), 1163–1170 | DOI | MR | Zbl

[8] Sobolev A. I., “The characterization of optimality principles in cooperative games by functional equations”, Mathematical Methods in the Social Sciences, 6, ed. Vorobiev N. N., Academy of Sciences of the Lithuanian SSR, Vilnius, 1975, 95–151 (in Russian)

[9] Vilkov V. B., “The nucleolus in cooperative games without side payments”, Journal of Computing Mathematics and Mathematical Physics, 14:5 (1974), 1327–1331 (In Russian) | MR

[10] Yanovskaya E., “Consistency for proportional solutions”, International Game Theory Review, 4:3 (2002), 343–356 | DOI | MR | Zbl