Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2014_7_a16, author = {Elena A. Lezhnina and Victor V. Zakharov}, title = {The {Nash} equilibrium in multy-product inventory model}, journal = {Contributions to game theory and management}, pages = {191--200}, publisher = {mathdoc}, volume = {7}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2014_7_a16/} }
TY - JOUR AU - Elena A. Lezhnina AU - Victor V. Zakharov TI - The Nash equilibrium in multy-product inventory model JO - Contributions to game theory and management PY - 2014 SP - 191 EP - 200 VL - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CGTM_2014_7_a16/ LA - en ID - CGTM_2014_7_a16 ER -
Elena A. Lezhnina; Victor V. Zakharov. The Nash equilibrium in multy-product inventory model. Contributions to game theory and management, Tome 7 (2014), pp. 191-200. http://geodesic.mathdoc.fr/item/CGTM_2014_7_a16/
[1] Nash J. F., “Non-Cooperative games”, Annals of Mathematics, 54 (1951), 286–295 | DOI | MR | Zbl
[2] Harris F., “Operation and Cost”, Factory Management Series, A. W. Shaw, Chicago, 1915, 48–52
[3] van Damm E., Stability and Perfection of Nash Equilibria, Springer-Verlag, Berlin, 1991 | MR
[4] Nash J. F., “Equilibrium Points in n-Person Games”, Proceedings of the National Academy of Sciences, 36 (1950), 48–59 | DOI | MR
[5] Dasgupta P., Maskin E., “The Existence of Equilibrium in Discontinuous Economic Games”, Review of Economics Studies, 53 (1986), 1–26 | DOI | MR | Zbl
[6] Mahajan S., van Ryzin G. J., “Inventory Competition Under Dynamic Consumer Choice”, Operations Research, 49:5 (2001), 646–657 | DOI | MR | Zbl
[7] Netessine S., Rudi N., Wang Y., Dynamic Inventory Competition and Customer Retention, Working paper, 2003
[8] Parlae M., “Game Theoretic Analysis of the Substitutable Product Inventory Problem with Random Demands”, Naval Research Logistics, 35 (1988), 397–409 | 3.0.CO;2-Z class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[9] Tirol Jean, The markets and the market power: The organization and industry theory, Translation from English by J. M. Donc, M. D. Facsirova, under edition A. S. Galperina and N. A. Zenkevich, in 2 Volumes, v. 1, Institute Economic school, SPb., 2000, 328 pp.; v. 2, 240 pp.
[10] Kukushkin N. S., Morozov V. V., The nonantagonistic Game Theory, Moscow State University, M., 1984, 103 pp. | Zbl
[11] Friedman James, Oligopoly Theory, Cambridge University Press, 1983, 260 pp.
[12] Bertrand J., “Theorie mathematique de la richesse sociale”, Journal des Savants., 67 (1883), 499–508
[13] Cournot A. A., Recherches sur les principes mathmatiques de la thorie des richesses, L. Hachette, Paris, 1883, 198 pp.
[14] Hax A. C., Candea D., Production and inventory management, Prentice-Hall, Englewood Cliffs, N.J., 1984, 135 pp.
[15] Haldey G., Whitin T. M., Analysis of inventory, Prentice-Hall, Englewood Cliffs, N.J., 1963
[16] Tersine R. J., Principles of inventory and materials management, Elsevier North Holland, Amsterdam, 1994 | MR
[17] Cachon G. P., “Supply chain coordination with contracts”, Supply Chain Management, Handbook in Operations Research and Management Science, 11, Elsevier B. V., Amsterdam, 2003, 229–340
[18] Mansur Gasratov, Victor Zakharov, “Games and Inventory Management”, Dynamic and Sustainability in International Logistics and Supply Chain Management, Cuvillier Verlag, Gottingen, 2011 | MR