Strictly strong $(n-1)$-equilibrium in $n$-person multicriteria games
Contributions to game theory and management, Tome 7 (2014), pp. 181-190

Voir la notice de l'article provenant de la source Math-Net.Ru

Using some specific approach to the coalition-consistency analysis in $n$-person multicriteria games we introduce two refinements of (weak Pareto) equilibria: the strong and strictly strong $(n-1)$-equilibriums. Axiomatization of the strictly strong $(n-1)$-equilibria (on closed families of multicriteria games) is provided in terms of consistency, strong one-person rationality, suitable variants of Pareto optimality and converse consistency axiom and others.
Keywords: multicriteria games; Pareto equilibria; strong equilibrium; consistency; axiomatizations.
@article{CGTM_2014_7_a15,
     author = {Denis V. Kuzyutin and Mariya V. Nikitina and Yaroslavna B. Pankratova},
     title = {Strictly strong $(n-1)$-equilibrium in $n$-person multicriteria games},
     journal = {Contributions to game theory and management},
     pages = {181--190},
     publisher = {mathdoc},
     volume = {7},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2014_7_a15/}
}
TY  - JOUR
AU  - Denis V. Kuzyutin
AU  - Mariya V. Nikitina
AU  - Yaroslavna B. Pankratova
TI  - Strictly strong $(n-1)$-equilibrium in $n$-person multicriteria games
JO  - Contributions to game theory and management
PY  - 2014
SP  - 181
EP  - 190
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2014_7_a15/
LA  - en
ID  - CGTM_2014_7_a15
ER  - 
%0 Journal Article
%A Denis V. Kuzyutin
%A Mariya V. Nikitina
%A Yaroslavna B. Pankratova
%T Strictly strong $(n-1)$-equilibrium in $n$-person multicriteria games
%J Contributions to game theory and management
%D 2014
%P 181-190
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2014_7_a15/
%G en
%F CGTM_2014_7_a15
Denis V. Kuzyutin; Mariya V. Nikitina; Yaroslavna B. Pankratova. Strictly strong $(n-1)$-equilibrium in $n$-person multicriteria games. Contributions to game theory and management, Tome 7 (2014), pp. 181-190. http://geodesic.mathdoc.fr/item/CGTM_2014_7_a15/