Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2014_7_a13, author = {Aleksei Y. Kondratev}, title = {Stationary state in a multistage auction model}, journal = {Contributions to game theory and management}, pages = {151--158}, publisher = {mathdoc}, volume = {7}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2014_7_a13/} }
Aleksei Y. Kondratev. Stationary state in a multistage auction model. Contributions to game theory and management, Tome 7 (2014), pp. 151-158. http://geodesic.mathdoc.fr/item/CGTM_2014_7_a13/
[1] Chatterjee K., Samuelson W., “Bargaining under incomplete informationg”, Operations Research, 31:5 (1983), 835–851 | DOI | Zbl
[2] Mazalov V. V., Kondratyev A. Y., “Bargaining model with incomplete information”, Vestnik St. Petersburg University. Ser. 10, 2012, no. 1, 33-–40 | MR
[3] Mazalov V. V., Kondratev A. Y., “Threshold strategies equilibrium in bargaining model”, Game theory and applications, 5:2 (2013), 46–63 | MR | Zbl
[4] Mazalov V. V., Mentcher A. E., Tokareva J. S., Negotiations. Mathematical theory, Lan, Saint-Petersburg, 2012, 304 pp.
[5] Mazalov V. V., Tokareva J. S., “Equilibrium in bargaining model with non-uniform distribution for reservation prices”, Game theory and applications, 3:2 (2011), 37–49 | MR | Zbl
[6] Myerson R., Satterthwait M. A., “Efficient mechanisms for Bilateral Trading”, Journal of Economic Theory, 29 (1983), 265–281 | DOI | MR | Zbl
[7] Myerson R., “Two-Person Bargaining Problems with Incomplete Information”, Econometrica, 52 (1984), 461–487 | DOI | MR | Zbl