On monotonicity of the SM-nucleolus and the $\alpha$-nucleolus
Contributions to game theory and management, Tome 7 (2014), pp. 8-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper two single-valued solution concepts of a TU-game with a finite set of players, the SM-nucleolus and the $\alpha$-nucleolus, are considered. Based on the procedure of finding lexicographical minimum, there was proposed an algorithm allowing to calculate the SM-nucleolus as well as the prenucleolus. This algorithm is modified to calculate the $\alpha$-nucleolus for any fixed $\alpha \in [0,1]$. Using this algorithm the monotonicity properties of the SM-nucleolus and the $\alpha$-nucleolus are studied by means of counterexamples.
Keywords: cooperative TU-game, solution concept, aggregate and coalitional monotonicity, the SM-nucleolus, the $\alpha$-nucleolus.
@article{CGTM_2014_7_a1,
     author = {Sergey V. Britvin and Svetlana I. Tarashnina},
     title = {On monotonicity of the {SM-nucleolus} and the $\alpha$-nucleolus},
     journal = {Contributions to game theory and management},
     pages = {8--16},
     publisher = {mathdoc},
     volume = {7},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2014_7_a1/}
}
TY  - JOUR
AU  - Sergey V. Britvin
AU  - Svetlana I. Tarashnina
TI  - On monotonicity of the SM-nucleolus and the $\alpha$-nucleolus
JO  - Contributions to game theory and management
PY  - 2014
SP  - 8
EP  - 16
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2014_7_a1/
LA  - en
ID  - CGTM_2014_7_a1
ER  - 
%0 Journal Article
%A Sergey V. Britvin
%A Svetlana I. Tarashnina
%T On monotonicity of the SM-nucleolus and the $\alpha$-nucleolus
%J Contributions to game theory and management
%D 2014
%P 8-16
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2014_7_a1/
%G en
%F CGTM_2014_7_a1
Sergey V. Britvin; Svetlana I. Tarashnina. On monotonicity of the SM-nucleolus and the $\alpha$-nucleolus. Contributions to game theory and management, Tome 7 (2014), pp. 8-16. http://geodesic.mathdoc.fr/item/CGTM_2014_7_a1/

[1] Britvin S., Tarashnina S., “Algorithms of finding the prenucleolus and the SM-nucleolus in cooperative TU-games”, Mathematical Game Theory and its Applications, 5:4 (2013), 14–32 (in Russian) | Zbl

[2] Maschler M., Peleg B., Shapley L. S., “Geometric properties of the kernel, nucleolus and related solution concepts”, Mathematics of Operations Research, 4:4 (1979), 303–338 | DOI | MR | Zbl

[3] Maschler M., “The Bargaining set, Kernel and Nucleolus”, Handbook of Game Theory, eds. R. Aumann, S. Hart, Elsevier Science Publishers BV, 1992, 591–665 | MR

[4] Megiddo N., “On nonmonotonicity of the bargaining set, the kernel and the nucleolus of a game”, SIAM Journal on Applied Mathemetics, 27:2 (1974), 355–358 | DOI | MR

[5] Pecherskiy S. L., Yanovskaya E. B., Cooperative games: soutions and axioms, European University press, St. Petersburg, 2004, 443 pp. (in Russian)

[6] Petrosjan L. A., Zenkevich N. A., Shevkoplyas E. V., Game theory, BHV-Petersburg, Saint-Petersburg, 2012, 432 pp. (in Russian)

[7] Schmeidler D., “The nucleolus of a characteristic function game”, SIAM Journal on Applied Mathematics, 17:6 (1969), 1163–1170 | DOI | MR | Zbl

[8] Shapley L. S., “A value for n-person games”, Contributions to the theory of games, v. II, eds. Kuhn, Tucker, Princeton University press, 1953, 307–311 | MR

[9] Smirnova N., Tarashnina S., “On generalisation of the nucleolus in cooperative games”, Journal of Applied and Industrial Mathematics, 18:4 (2011), 77–93 (in Russian) | MR | Zbl

[10] Tarashnina S., “The simplified modified nucleolus of a cooperative TU-game”, Operations Research and Decision Theory, 19:1 (2011), 150–166 | MR | Zbl

[11] Tauman Y., Zapechelnyuk A., “On (non-) monotonicity of cooperative solutions”, International Journal of Game Theory, 39:1 (2010), 171–175 | DOI | MR | Zbl

[12] Young H. P., “Monotonic solution of cooperative games”, International Journal of Game Theory, 14 (1985), 65–72 | DOI | MR | Zbl