Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2013_6_a8, author = {Yuan Feng and Theo S. H. Driessen and Georg Still}, title = {Consistency to the {Values} for {Games} in {Generalized} {Characteristic} {Function} {Form}}, journal = {Contributions to game theory and management}, pages = {134--145}, publisher = {mathdoc}, volume = {6}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2013_6_a8/} }
TY - JOUR AU - Yuan Feng AU - Theo S. H. Driessen AU - Georg Still TI - Consistency to the Values for Games in Generalized Characteristic Function Form JO - Contributions to game theory and management PY - 2013 SP - 134 EP - 145 VL - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CGTM_2013_6_a8/ LA - en ID - CGTM_2013_6_a8 ER -
%0 Journal Article %A Yuan Feng %A Theo S. H. Driessen %A Georg Still %T Consistency to the Values for Games in Generalized Characteristic Function Form %J Contributions to game theory and management %D 2013 %P 134-145 %V 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/CGTM_2013_6_a8/ %G en %F CGTM_2013_6_a8
Yuan Feng; Theo S. H. Driessen; Georg Still. Consistency to the Values for Games in Generalized Characteristic Function Form. Contributions to game theory and management, Tome 6 (2013), pp. 134-145. http://geodesic.mathdoc.fr/item/CGTM_2013_6_a8/
[1] Bergantinos G., Sanchez E., “Weighted Shapley values for games in generalized characteristic function form”, Top, 9 (2001), 55–67 | DOI | MR | Zbl
[2] Driessen T. S. H., “Associated consistency and values for TU games”, International Journal of Game Theory, 39 (2010), 467–482 | DOI | MR | Zbl
[3] Driessen T. S. H., Radzik T., “A wighted pseudo-potential approach to values for TU-games”, International Transactions in Operational Research, 9 (2002), 303–320 | DOI | MR | Zbl
[4] Evans R. A., “Value, consistency, and random coalition formation”, Games and Economic Behavior, 12:1 (1996), 68–80 | DOI | MR | Zbl
[5] Hart S., Mas-Colell A., “Potential, value, and consistency”, Econometrica, 57:3 (1989), 589–614 | DOI | MR | Zbl
[6] Kalai E., Samet D., “On weighted Shapley values”, International Journal of Game Theory, 16 (1987), 205–222 | DOI | MR | Zbl
[7] Nowak A. S., Radzik T., “The Shapley value for $n$-person games in generalized characteristic function form”, Games and Economic Behavior, 6 (1994), 150–161 | DOI | MR | Zbl
[8] Owen G., “Values of games with a priori unions”, Mathematical economics and game theory, 141, eds. R. Henn, O. Moeschlin, Springer, 1977, 76–88 | DOI | MR
[9] Ruiz L. M., Valenciano F., Zarzuelo J. M., “The family of least square values for transferable utility games”, Games and Economic Behavior, 24 (1998), 109–130 | DOI | MR | Zbl
[10] Sanchez E., Bergantinos G., “On values for generalized characteristic functions”, OR Spektrum, 19 (1997), 229–234 | DOI | MR | Zbl
[11] Sanchez E., Bergantinos G., “Coalitional values and generalized characteristic functions”, Mathematical Methods of Operations Research, 49 (1999), 413–433 | DOI | MR | Zbl
[12] Shapley L. S., “A value for $n$-person games”, Contributions to the Theory of Games, v. II, Annals of Mathematics Studies, 28, eds. H. W. Kuhn, A. W. Tucker, Princeton University Press, Princeton, 1953, 307–317 | MR
[13] Shapley L. S., Additive and Non-additive Set Functions, Ph. D. Thesis, Department of Mathematics, Princeton University, 1953 | MR
[14] Young H. P., “Monotonic solutions of cooperative games”, International Journal of Game Theory, 14 (1985), 65–72 | DOI | MR | Zbl