Mots-clés : core, sufficient conditions.
@article{CGTM_2013_6_a34,
author = {Alexandra B. Zinchenko},
title = {A {Simple} {Way} to {Obtain} the {Sufficient} {Nonemptiness} {Conditions} for {Core} of {TU} {Game}},
journal = {Contributions to game theory and management},
pages = {447--457},
year = {2013},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CGTM_2013_6_a34/}
}
Alexandra B. Zinchenko. A Simple Way to Obtain the Sufficient Nonemptiness Conditions for Core of TU Game. Contributions to game theory and management, Tome 6 (2013), pp. 447-457. http://geodesic.mathdoc.fr/item/CGTM_2013_6_a34/
[1] Branzei R., Tijs S., “Additivity regions for solutions in cooperative game theory”, Libertas Mathematica, 21 (2001), 155–167 | MR | Zbl
[2] Branzei R., Tijs S. H., “Cooperative games with a simplical core”, Balkan Journal of Geometry and Application, 6 (2001), 7–15 | MR | Zbl
[3] Bondareva O. N., “Certain applications of the methods of linear programing to the theory of cooperative games”, Problemy Kibernetiki, 10 (1963), 119–139 (in Russian) | MR | Zbl
[4] Hamers H., Klijn F., Solymosi T., Tijs S., Villar J. P., “Assignment games satisfy the CoMa-property”, Games and Economic Behavior, 38:2 (2002), 231–239 | DOI | MR | Zbl
[5] Gillies D. B., Some theorems on $n$-person games, PhD thesis, University Press Princeton, Princeton, New Jersey, 1953 | MR
[6] Granot D., Huberman G., “Minimum Cost Spanning Tree Games”, Mathematical Programming, 21 (1981), 1–18 | DOI | MR | Zbl
[7] Kuipers J., “On the Core of Information Graph Games”, Int. J. Game Theory, 21 (1993), 339–350 | DOI | MR | Zbl
[8] Muto S., Nakayama M., Potters J., Tijs S., “On big boss games”, The Economic Studies Quarterly, 39 (1988), 303–321
[9] Potters J., Poos R., Tijs S., Muto S., “Clan games”, Games and Economic Behavior, 1 (1989), 275–293 | DOI | MR | Zbl
[10] Shapley L.S., “On balanced sets and cores”, Naval Research Logistics Quarterly, 14 (1967), 453–460 | DOI
[11] Shapley L. S., “Cores of Convex Games”, Int. J. Game Theory, 1 (1967), 11–26 | DOI | MR
[12] Voorneveld M., Grahn S., A minimal test for convex games and the Shapley value, Working paper series, No 2, Department of economics, Uppsala university, 2001, 8 pp.
[13] van Velzen B., Hamersa H., Nordea H., A note on permutationally convex games, CentER Discussion Paper No 2005-83, Tilburg University, 2005, 18 pp.