A Simple Way to Obtain the Sufficient Nonemptiness Conditions for Core of TU Game
Contributions to game theory and management, Tome 6 (2013), pp. 447-457.

Voir la notice de l'article provenant de la source Math-Net.Ru

The system of linear constraints like one that determines the core of TU game is considered. Expressing its basis solutions through characteristic function we obtain a list of sufficient conditions under which the core is nonempty. Some of them are the generalizations of known results.
Keywords: cooperative TU game, core, balancedness, sufficient conditions.
@article{CGTM_2013_6_a34,
     author = {Alexandra B. Zinchenko},
     title = {A {Simple} {Way} to {Obtain} the {Sufficient} {Nonemptiness} {Conditions} for {Core} of {TU} {Game}},
     journal = {Contributions to game theory and management},
     pages = {447--457},
     publisher = {mathdoc},
     volume = {6},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2013_6_a34/}
}
TY  - JOUR
AU  - Alexandra B. Zinchenko
TI  - A Simple Way to Obtain the Sufficient Nonemptiness Conditions for Core of TU Game
JO  - Contributions to game theory and management
PY  - 2013
SP  - 447
EP  - 457
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2013_6_a34/
LA  - en
ID  - CGTM_2013_6_a34
ER  - 
%0 Journal Article
%A Alexandra B. Zinchenko
%T A Simple Way to Obtain the Sufficient Nonemptiness Conditions for Core of TU Game
%J Contributions to game theory and management
%D 2013
%P 447-457
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2013_6_a34/
%G en
%F CGTM_2013_6_a34
Alexandra B. Zinchenko. A Simple Way to Obtain the Sufficient Nonemptiness Conditions for Core of TU Game. Contributions to game theory and management, Tome 6 (2013), pp. 447-457. http://geodesic.mathdoc.fr/item/CGTM_2013_6_a34/

[1] Branzei R., Tijs S., “Additivity regions for solutions in cooperative game theory”, Libertas Mathematica, 21 (2001), 155–167 | MR | Zbl

[2] Branzei R., Tijs S. H., “Cooperative games with a simplical core”, Balkan Journal of Geometry and Application, 6 (2001), 7–15 | MR | Zbl

[3] Bondareva O. N., “Certain applications of the methods of linear programing to the theory of cooperative games”, Problemy Kibernetiki, 10 (1963), 119–139 (in Russian) | MR | Zbl

[4] Hamers H., Klijn F., Solymosi T., Tijs S., Villar J. P., “Assignment games satisfy the CoMa-property”, Games and Economic Behavior, 38:2 (2002), 231–239 | DOI | MR | Zbl

[5] Gillies D. B., Some theorems on $n$-person games, PhD thesis, University Press Princeton, Princeton, New Jersey, 1953 | MR

[6] Granot D., Huberman G., “Minimum Cost Spanning Tree Games”, Mathematical Programming, 21 (1981), 1–18 | DOI | MR | Zbl

[7] Kuipers J., “On the Core of Information Graph Games”, Int. J. Game Theory, 21 (1993), 339–350 | DOI | MR | Zbl

[8] Muto S., Nakayama M., Potters J., Tijs S., “On big boss games”, The Economic Studies Quarterly, 39 (1988), 303–321

[9] Potters J., Poos R., Tijs S., Muto S., “Clan games”, Games and Economic Behavior, 1 (1989), 275–293 | DOI | MR | Zbl

[10] Shapley L.S., “On balanced sets and cores”, Naval Research Logistics Quarterly, 14 (1967), 453–460 | DOI

[11] Shapley L. S., “Cores of Convex Games”, Int. J. Game Theory, 1 (1967), 11–26 | DOI | MR

[12] Voorneveld M., Grahn S., A minimal test for convex games and the Shapley value, Working paper series, No 2, Department of economics, Uppsala university, 2001, 8 pp.

[13] van Velzen B., Hamersa H., Nordea H., A note on permutationally convex games, CentER Discussion Paper No 2005-83, Tilburg University, 2005, 18 pp.